基于集成学习和象群优化算法的超短期风电预测

Feng Jiang, Jiawei Yang
{"title":"基于集成学习和象群优化算法的超短期风电预测","authors":"Feng Jiang, Jiawei Yang","doi":"10.1109/ICICIP47338.2019.9012130","DOIUrl":null,"url":null,"abstract":"Accurate prediction of wind power is essential for efficient use of energy. In this paper, an ensemble learning model of optimization algorithm is proposed. Firstly, the data of wind power are decomposed into a series of signal sets by Ensemble empirical mode decomposition. Then, the least squares support vector machine (LSSVM) optimized by Elephant Herd optimization algorithm (EHO) is used to predict each component signal. Clustering method is utilized to cluster the samples. Finally, the EHO-LSSVM method is used to ensemble the sample results to get the final prediction value. Wind power data of PJM west area are used to study the effects of the hybrid method. The comparison results with eight benchmark models shows that the hybrid model has better performance and smaller error values than all other benchmark models. In conclusion, the proposed ensemble learning model is considerably effective and contains high robustness for the wind power data forecast.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra-short-term Wind Power Forecast Using Ensemble Learning and Elephant Herd Optimization Algorithm\",\"authors\":\"Feng Jiang, Jiawei Yang\",\"doi\":\"10.1109/ICICIP47338.2019.9012130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of wind power is essential for efficient use of energy. In this paper, an ensemble learning model of optimization algorithm is proposed. Firstly, the data of wind power are decomposed into a series of signal sets by Ensemble empirical mode decomposition. Then, the least squares support vector machine (LSSVM) optimized by Elephant Herd optimization algorithm (EHO) is used to predict each component signal. Clustering method is utilized to cluster the samples. Finally, the EHO-LSSVM method is used to ensemble the sample results to get the final prediction value. Wind power data of PJM west area are used to study the effects of the hybrid method. The comparison results with eight benchmark models shows that the hybrid model has better performance and smaller error values than all other benchmark models. In conclusion, the proposed ensemble learning model is considerably effective and contains high robustness for the wind power data forecast.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准确预测风力对有效利用能源至关重要。提出了一种优化算法的集成学习模型。首先,采用集合经验模态分解方法将风电数据分解为一系列信号集;然后,利用大象群优化算法(EHO)优化的最小二乘支持向量机(LSSVM)对各分量信号进行预测;采用聚类方法对样本进行聚类。最后,利用EHO-LSSVM方法对样本结果进行集合,得到最终预测值。利用PJM西部地区的风电数据,研究了混合方法的效果。与8种基准模型的比较结果表明,混合模型比其他所有基准模型具有更好的性能和更小的误差值。综上所述,本文提出的集成学习模型对风电数据预测具有较高的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-short-term Wind Power Forecast Using Ensemble Learning and Elephant Herd Optimization Algorithm
Accurate prediction of wind power is essential for efficient use of energy. In this paper, an ensemble learning model of optimization algorithm is proposed. Firstly, the data of wind power are decomposed into a series of signal sets by Ensemble empirical mode decomposition. Then, the least squares support vector machine (LSSVM) optimized by Elephant Herd optimization algorithm (EHO) is used to predict each component signal. Clustering method is utilized to cluster the samples. Finally, the EHO-LSSVM method is used to ensemble the sample results to get the final prediction value. Wind power data of PJM west area are used to study the effects of the hybrid method. The comparison results with eight benchmark models shows that the hybrid model has better performance and smaller error values than all other benchmark models. In conclusion, the proposed ensemble learning model is considerably effective and contains high robustness for the wind power data forecast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1