Bisong Tan, Kejun Li, J. Yan, Yu Du, Jia Mao, Tianqing Chen, C. Peng
{"title":"HgCdTe HOT MW红外探测器的研究","authors":"Bisong Tan, Kejun Li, J. Yan, Yu Du, Jia Mao, Tianqing Chen, C. Peng","doi":"10.1117/12.2665301","DOIUrl":null,"url":null,"abstract":"In this paper, we report the mid-wavelength HgCdTe HOT (High Operating Temperature) detector with 640×512 array and center distance of 15μm by JueXin Microelectronics Co., Ltd. The detector can work steadily when the focal plane array temperature is 140K. We grew up the CdZnTe substrates by vertical Bridgman technique and HgCdTe materials by liquid phase epitaxy process, then the planar n+-on-p diodes were formed by boron ion implantation. Through the optimization of material growth and device fabrication process, the dark current of the device is reduced. At 140K, the cut-off wavelength of the device is 4.7μm, the dark current density reaches 3×10-7A/cm2, and the dark current density of the device is close to that of P-on-N (rule 07). At the focal plane operating temperature of 140K, the operability of the detector can reach more than 99.5%, the NETD is less than 13mK, and the RFPN is less than 0.6mV (close to temporal noise). At the same low temperature, when the operating temperature of the device changes from 80K to 140K, the power consumption of the detector module is reduced by 37% and the cooling time is shortened by 36%.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of HgCdTe HOT MW infrared detector\",\"authors\":\"Bisong Tan, Kejun Li, J. Yan, Yu Du, Jia Mao, Tianqing Chen, C. Peng\",\"doi\":\"10.1117/12.2665301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report the mid-wavelength HgCdTe HOT (High Operating Temperature) detector with 640×512 array and center distance of 15μm by JueXin Microelectronics Co., Ltd. The detector can work steadily when the focal plane array temperature is 140K. We grew up the CdZnTe substrates by vertical Bridgman technique and HgCdTe materials by liquid phase epitaxy process, then the planar n+-on-p diodes were formed by boron ion implantation. Through the optimization of material growth and device fabrication process, the dark current of the device is reduced. At 140K, the cut-off wavelength of the device is 4.7μm, the dark current density reaches 3×10-7A/cm2, and the dark current density of the device is close to that of P-on-N (rule 07). At the focal plane operating temperature of 140K, the operability of the detector can reach more than 99.5%, the NETD is less than 13mK, and the RFPN is less than 0.6mV (close to temporal noise). At the same low temperature, when the operating temperature of the device changes from 80K to 140K, the power consumption of the detector module is reduced by 37% and the cooling time is shortened by 36%.\",\"PeriodicalId\":258680,\"journal\":{\"name\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2665301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2665301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文报道了由聚信微电子有限公司研制的640×512阵列、中心距为15μm的中波长HgCdTe HOT (High Operating Temperature,高温工作温度)探测器。当焦平面阵列温度为140K时,探测器可以稳定工作。采用垂直布里奇曼法生长CdZnTe衬底,液相外延法生长HgCdTe材料,然后采用硼离子注入形成平面n+-on-p二极管。通过对材料生长和器件制造工艺的优化,降低了器件的暗电流。在140K时,器件的截止波长为4.7μm,暗电流密度达到3×10-7A/cm2,器件的暗电流密度接近于P-on-N的暗电流密度(规则07)。在焦平面工作温度为140K时,探测器的可操作性可达99.5%以上,NETD小于13mK, RFPN小于0.6mV(接近时间噪声)。在同样的低温下,当器件的工作温度从80K变化到140K时,探测器模块的功耗降低37%,冷却时间缩短36%。
In this paper, we report the mid-wavelength HgCdTe HOT (High Operating Temperature) detector with 640×512 array and center distance of 15μm by JueXin Microelectronics Co., Ltd. The detector can work steadily when the focal plane array temperature is 140K. We grew up the CdZnTe substrates by vertical Bridgman technique and HgCdTe materials by liquid phase epitaxy process, then the planar n+-on-p diodes were formed by boron ion implantation. Through the optimization of material growth and device fabrication process, the dark current of the device is reduced. At 140K, the cut-off wavelength of the device is 4.7μm, the dark current density reaches 3×10-7A/cm2, and the dark current density of the device is close to that of P-on-N (rule 07). At the focal plane operating temperature of 140K, the operability of the detector can reach more than 99.5%, the NETD is less than 13mK, and the RFPN is less than 0.6mV (close to temporal noise). At the same low temperature, when the operating temperature of the device changes from 80K to 140K, the power consumption of the detector module is reduced by 37% and the cooling time is shortened by 36%.