Shubham Saxena, Malek Souilem, W. Dghais, J. N. Tripathi, H. Shrimali
{"title":"I/O驱动信号/电源完整性的类ibis模型研究","authors":"Shubham Saxena, Malek Souilem, W. Dghais, J. N. Tripathi, H. Shrimali","doi":"10.1109/SPIN52536.2021.9566125","DOIUrl":null,"url":null,"abstract":"This paper presents a study on non-linear modeling, reported in the state-of-the-art in the last decade for I/O drivers. The study includes the IBIS-like modeling techniques including package parasitics. The IBIS-like model has been analyzed mathematically and validated using 28 nm CMOS technology of TSMC foundry. For validation purposes, the predriver circuit and the I/O buffers have been simulated with 0.9 V of VDD. The IBIS-like nonlinear models have been created using Simulink® and the results have been compared with the Electronic Design Automation (EDA) tools. The Simulink® results show a Normalized Mean Square Error (NMSE) of - 51.91 dB with 1.63 sec of CPU time for the case of pull-up current, -49.42 dB with 474.34 msec of CPU time for the case of pulldown current response. In the case of output voltage response, the NMSE is - 48.33 dB and 2.12 sec of CPU time.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on an IBIS-like Model to Ensure Signal/Power Integrity for I/O Drivers\",\"authors\":\"Shubham Saxena, Malek Souilem, W. Dghais, J. N. Tripathi, H. Shrimali\",\"doi\":\"10.1109/SPIN52536.2021.9566125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on non-linear modeling, reported in the state-of-the-art in the last decade for I/O drivers. The study includes the IBIS-like modeling techniques including package parasitics. The IBIS-like model has been analyzed mathematically and validated using 28 nm CMOS technology of TSMC foundry. For validation purposes, the predriver circuit and the I/O buffers have been simulated with 0.9 V of VDD. The IBIS-like nonlinear models have been created using Simulink® and the results have been compared with the Electronic Design Automation (EDA) tools. The Simulink® results show a Normalized Mean Square Error (NMSE) of - 51.91 dB with 1.63 sec of CPU time for the case of pull-up current, -49.42 dB with 474.34 msec of CPU time for the case of pulldown current response. In the case of output voltage response, the NMSE is - 48.33 dB and 2.12 sec of CPU time.\",\"PeriodicalId\":343177,\"journal\":{\"name\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN52536.2021.9566125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study on an IBIS-like Model to Ensure Signal/Power Integrity for I/O Drivers
This paper presents a study on non-linear modeling, reported in the state-of-the-art in the last decade for I/O drivers. The study includes the IBIS-like modeling techniques including package parasitics. The IBIS-like model has been analyzed mathematically and validated using 28 nm CMOS technology of TSMC foundry. For validation purposes, the predriver circuit and the I/O buffers have been simulated with 0.9 V of VDD. The IBIS-like nonlinear models have been created using Simulink® and the results have been compared with the Electronic Design Automation (EDA) tools. The Simulink® results show a Normalized Mean Square Error (NMSE) of - 51.91 dB with 1.63 sec of CPU time for the case of pull-up current, -49.42 dB with 474.34 msec of CPU time for the case of pulldown current response. In the case of output voltage response, the NMSE is - 48.33 dB and 2.12 sec of CPU time.