{"title":"用于立方体电离层等离子体诊断的全3d打印微型Langmuire多探针传感器","authors":"Z. Bigelow, L. Velásquez-García","doi":"10.1109/IVNC57695.2023.10188955","DOIUrl":null,"url":null,"abstract":"We report the design, fabrication, and characterization of the first additively manufactured, multi-Langmuir probe (MLP) sensor for CubeSat plasma diagnostics. The probes are configured on three different, independent sensing systems (i.e., single, dual, and triple Langmuir probes {LPs}) that generate rich plasma data, including corroborated and real-time measurements. The probe electrodes have a 0.5 mm by 0.5 mm cross-section and were additively manufactured in stainless steel (SS) via binder material jetting, while the sensor housing was 3D-printed in the glass-ceramic material, vitrolite, via vat polymerization. The 3D-printed MLP was tested in a laboratory helicon plasma. The single and dual LPs showed excellent agreement, to within <5% for all plasma characteristics. The triple LP measured plasma parameters instantly, providing a time-sensitive snapshot of the plasma.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully 3D-Printed Miniature Langmuire Multi-Probe Sensor for Cubesat Ionospheric Plasma Diagnostics\",\"authors\":\"Z. Bigelow, L. Velásquez-García\",\"doi\":\"10.1109/IVNC57695.2023.10188955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the design, fabrication, and characterization of the first additively manufactured, multi-Langmuir probe (MLP) sensor for CubeSat plasma diagnostics. The probes are configured on three different, independent sensing systems (i.e., single, dual, and triple Langmuir probes {LPs}) that generate rich plasma data, including corroborated and real-time measurements. The probe electrodes have a 0.5 mm by 0.5 mm cross-section and were additively manufactured in stainless steel (SS) via binder material jetting, while the sensor housing was 3D-printed in the glass-ceramic material, vitrolite, via vat polymerization. The 3D-printed MLP was tested in a laboratory helicon plasma. The single and dual LPs showed excellent agreement, to within <5% for all plasma characteristics. The triple LP measured plasma parameters instantly, providing a time-sensitive snapshot of the plasma.\",\"PeriodicalId\":346266,\"journal\":{\"name\":\"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVNC57695.2023.10188955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们报道了用于CubeSat等离子体诊断的第一个增材制造的多langmuir探针(MLP)传感器的设计、制造和表征。探针配置在三种不同的、独立的传感系统上(即单、双和三重Langmuir探针{LPs}),产生丰富的等离子体数据,包括确证和实时测量。探头电极的横截面为0.5 mm × 0.5 mm,并通过粘结剂材料喷射用不锈钢(SS)进行增材制造,而传感器外壳则通过还原聚合在玻璃陶瓷材料vitrolite上进行3d打印。3d打印的MLP在实验室螺旋等离子体中进行了测试。单和双LPs表现出极好的一致性,在<5%以内的所有血浆特征。三重LP立即测量等离子体参数,提供等离子体的时间敏感快照。
We report the design, fabrication, and characterization of the first additively manufactured, multi-Langmuir probe (MLP) sensor for CubeSat plasma diagnostics. The probes are configured on three different, independent sensing systems (i.e., single, dual, and triple Langmuir probes {LPs}) that generate rich plasma data, including corroborated and real-time measurements. The probe electrodes have a 0.5 mm by 0.5 mm cross-section and were additively manufactured in stainless steel (SS) via binder material jetting, while the sensor housing was 3D-printed in the glass-ceramic material, vitrolite, via vat polymerization. The 3D-printed MLP was tested in a laboratory helicon plasma. The single and dual LPs showed excellent agreement, to within <5% for all plasma characteristics. The triple LP measured plasma parameters instantly, providing a time-sensitive snapshot of the plasma.