{"title":"碳化硅黑磷红外光电晶体管与广谱传感物联网应用","authors":"W. Tan, Li Huang, Rui Jie Ng, Lin Wang, K. Ang","doi":"10.1109/IEDM.2017.8268352","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel black phosphorus carbide (b-PC) phototransistor with a wide absorption spectrum that spans most molecular fingerprints till 8,000 nm and a tunable responsivity and response time at an excitation wavelength of 2,004 nm. The b-PC phototransistor achieves a high responsivity (R) of 2,163 A/W and a short response time of 5.6 ps, which renders it suitable for high speed and weak signal sensing. Its noise-equivalent-power NEPshot ∼ 1.3 fW/Hz1/2 indicates infrared radiation in the femto-watt range can be detected above the shot noise level of this phototransistor. Under the same excitation power, its responsivity and detectivity performance in ambient and room temperature conditions are currently ahead of all recent top performing photodetectors based on 2D materials, showing promise for future internet-of-things (IoT) applications.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black phosphorus carbide infrared phototransistor with wide spectrum sensing for IoT applications\",\"authors\":\"W. Tan, Li Huang, Rui Jie Ng, Lin Wang, K. Ang\",\"doi\":\"10.1109/IEDM.2017.8268352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a novel black phosphorus carbide (b-PC) phototransistor with a wide absorption spectrum that spans most molecular fingerprints till 8,000 nm and a tunable responsivity and response time at an excitation wavelength of 2,004 nm. The b-PC phototransistor achieves a high responsivity (R) of 2,163 A/W and a short response time of 5.6 ps, which renders it suitable for high speed and weak signal sensing. Its noise-equivalent-power NEPshot ∼ 1.3 fW/Hz1/2 indicates infrared radiation in the femto-watt range can be detected above the shot noise level of this phototransistor. Under the same excitation power, its responsivity and detectivity performance in ambient and room temperature conditions are currently ahead of all recent top performing photodetectors based on 2D materials, showing promise for future internet-of-things (IoT) applications.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们展示了一种新型的黑碳化磷(b-PC)光电晶体管,其吸收光谱宽,可跨越大多数分子指纹直至8,000 nm,并且在激发波长为2004 nm时具有可调的响应率和响应时间。b-PC光电晶体管具有2163 a /W的高响应率(R)和5.6 ps的短响应时间,适用于高速和弱信号检测。它的噪声当量功率NEPshot ~ 1.3 fW/Hz1/2表明,在该光电晶体管的散粒噪声水平之上,可以检测到飞瓦范围内的红外辐射。在相同的激励功率下,其在环境和室温条件下的响应性和探测性能目前领先于最近所有基于2D材料的高性能光电探测器,显示出未来物联网(IoT)应用的前景。
Black phosphorus carbide infrared phototransistor with wide spectrum sensing for IoT applications
We demonstrate a novel black phosphorus carbide (b-PC) phototransistor with a wide absorption spectrum that spans most molecular fingerprints till 8,000 nm and a tunable responsivity and response time at an excitation wavelength of 2,004 nm. The b-PC phototransistor achieves a high responsivity (R) of 2,163 A/W and a short response time of 5.6 ps, which renders it suitable for high speed and weak signal sensing. Its noise-equivalent-power NEPshot ∼ 1.3 fW/Hz1/2 indicates infrared radiation in the femto-watt range can be detected above the shot noise level of this phototransistor. Under the same excitation power, its responsivity and detectivity performance in ambient and room temperature conditions are currently ahead of all recent top performing photodetectors based on 2D materials, showing promise for future internet-of-things (IoT) applications.