电子商务推荐系统的分层用户分析

Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Dawei Yin
{"title":"电子商务推荐系统的分层用户分析","authors":"Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Dawei Yin","doi":"10.1145/3336191.3371827","DOIUrl":null,"url":null,"abstract":"Hierarchical user profiling that aims to model users' real-time interests in different granularity is an essential issue for personalized recommendations in E-commerce. On one hand, items (i.e. products) are usually organized hierarchically in categories, and correspondingly users' interests are naturally hierarchical on different granularity of items and categories. On the other hand, multiple granularity oriented recommendations become very popular in E-commerce sites, which require hierarchical user profiling in different granularity as well. In this paper, we propose HUP, a Hierarchical User Profiling framework to solve the hierarchical user profiling problem in E-commerce recommender systems. In HUP, we provide a Pyramid Recurrent Neural Networks, equipped with Behavior-LSTM to formulate users' hierarchical real-time interests at multiple scales. Furthermore, instead of simply utilizing users' item-level behaviors (e.g., ratings or clicks) in conventional methods, HUP harvests the sequential information of users' temporal finely-granular interactions (micro-behaviors, e.g., clicks on components of items like pictures or comments, browses with navigation of the search engines or recommendations) for modeling. Extensive experiments on two real-world E-commerce datasets demonstrate the significant performance gains of the HUP against state-of-the-art methods for the hierarchical user profiling and recommendation problems. We release the codes and datasets at https://github.com/guyulongcs/WSDM2020_HUP.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Hierarchical User Profiling for E-commerce Recommender Systems\",\"authors\":\"Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Dawei Yin\",\"doi\":\"10.1145/3336191.3371827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical user profiling that aims to model users' real-time interests in different granularity is an essential issue for personalized recommendations in E-commerce. On one hand, items (i.e. products) are usually organized hierarchically in categories, and correspondingly users' interests are naturally hierarchical on different granularity of items and categories. On the other hand, multiple granularity oriented recommendations become very popular in E-commerce sites, which require hierarchical user profiling in different granularity as well. In this paper, we propose HUP, a Hierarchical User Profiling framework to solve the hierarchical user profiling problem in E-commerce recommender systems. In HUP, we provide a Pyramid Recurrent Neural Networks, equipped with Behavior-LSTM to formulate users' hierarchical real-time interests at multiple scales. Furthermore, instead of simply utilizing users' item-level behaviors (e.g., ratings or clicks) in conventional methods, HUP harvests the sequential information of users' temporal finely-granular interactions (micro-behaviors, e.g., clicks on components of items like pictures or comments, browses with navigation of the search engines or recommendations) for modeling. Extensive experiments on two real-world E-commerce datasets demonstrate the significant performance gains of the HUP against state-of-the-art methods for the hierarchical user profiling and recommendation problems. We release the codes and datasets at https://github.com/guyulongcs/WSDM2020_HUP.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

分层用户分析是电子商务中个性化推荐的一个重要问题,它旨在对用户的实时兴趣进行不同粒度的建模。一方面,物品(即产品)通常按类别进行分层组织,相应地,用户的兴趣自然会在物品和类别的不同粒度上进行分层。另一方面,面向多个粒度的推荐在电子商务网站中变得非常流行,这也需要不同粒度的分层用户分析。为了解决电子商务推荐系统中的分层用户分析问题,本文提出了分层用户分析框架HUP。在HUP中,我们提供了一个金字塔递归神经网络,配备了Behavior-LSTM来制定用户在多个尺度上的分层实时兴趣。此外,与传统方法中简单地利用用户的项目级行为(例如,评分或点击)不同,HUP收集用户时间细粒度交互(微观行为,例如,点击图片或评论等项目组件,浏览搜索引擎导航或推荐)的顺序信息进行建模。在两个真实世界的电子商务数据集上进行的大量实验表明,在分层用户分析和推荐问题上,HUP相对于最先进的方法取得了显著的性能提升。我们在https://github.com/guyulongcs/WSDM2020_HUP上发布代码和数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical User Profiling for E-commerce Recommender Systems
Hierarchical user profiling that aims to model users' real-time interests in different granularity is an essential issue for personalized recommendations in E-commerce. On one hand, items (i.e. products) are usually organized hierarchically in categories, and correspondingly users' interests are naturally hierarchical on different granularity of items and categories. On the other hand, multiple granularity oriented recommendations become very popular in E-commerce sites, which require hierarchical user profiling in different granularity as well. In this paper, we propose HUP, a Hierarchical User Profiling framework to solve the hierarchical user profiling problem in E-commerce recommender systems. In HUP, we provide a Pyramid Recurrent Neural Networks, equipped with Behavior-LSTM to formulate users' hierarchical real-time interests at multiple scales. Furthermore, instead of simply utilizing users' item-level behaviors (e.g., ratings or clicks) in conventional methods, HUP harvests the sequential information of users' temporal finely-granular interactions (micro-behaviors, e.g., clicks on components of items like pictures or comments, browses with navigation of the search engines or recommendations) for modeling. Extensive experiments on two real-world E-commerce datasets demonstrate the significant performance gains of the HUP against state-of-the-art methods for the hierarchical user profiling and recommendation problems. We release the codes and datasets at https://github.com/guyulongcs/WSDM2020_HUP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1