一氧化碳(CO)和石油气体(C14H30)分类光度应用

Happy Nugroho, Edhi Sarwono, Aditya Rinaldi
{"title":"一氧化碳(CO)和石油气体(C14H30)分类光度应用","authors":"Happy Nugroho, Edhi Sarwono, Aditya Rinaldi","doi":"10.30872/ppj.v1i1.559","DOIUrl":null,"url":null,"abstract":"Gas classification techniques are often found in several applied fields such as, detection of leak gas in gas cylinders, monitoring the threshold of harmful pollutant gases in the air, health diagnostics, early detection of fire hazards, and others. This requires measurement techniques that are adaptive and robust that can dynamically capture information on changes in vapor or gas compounds contained in free air. This research has been conducted to analyze and identify the types of gas compounds, namely CO and petrodiesel fuel vapor (C14H30). The design of this tool uses the principle of spectrophotometry and the calculation of Backprogation Neural Networks. The working principle is that light radiation in the Light Emitting Diode (LED) series, which has a wavelength range of 385nm to 1720nm, is absorbed to penetrate CO gas or petrodiesel fuel vapor (C14H30) that you want to identify. Light radiation that has passed through the gas / vapor compound was captured by the photodiode sensor. The emission of LED series light radiation produces different wavelength absorption patterns that will be processed by the Backprogation Neural network as an input signal in the identification and learning process. The results of this experiment show the success rate of the Backpropagation neural network in identifying the type of CO gas and petrodiesel fuel vapor (C14H30) is 80%. \n ","PeriodicalId":221598,"journal":{"name":"Progressive Physics Journal","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aplikasi Metode Spektrofotometri pada Klasifikasi Gas Karbon Monoksida (CO) dan Uap Bahan Bakar Petrodiesel (C14H30)\",\"authors\":\"Happy Nugroho, Edhi Sarwono, Aditya Rinaldi\",\"doi\":\"10.30872/ppj.v1i1.559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas classification techniques are often found in several applied fields such as, detection of leak gas in gas cylinders, monitoring the threshold of harmful pollutant gases in the air, health diagnostics, early detection of fire hazards, and others. This requires measurement techniques that are adaptive and robust that can dynamically capture information on changes in vapor or gas compounds contained in free air. This research has been conducted to analyze and identify the types of gas compounds, namely CO and petrodiesel fuel vapor (C14H30). The design of this tool uses the principle of spectrophotometry and the calculation of Backprogation Neural Networks. The working principle is that light radiation in the Light Emitting Diode (LED) series, which has a wavelength range of 385nm to 1720nm, is absorbed to penetrate CO gas or petrodiesel fuel vapor (C14H30) that you want to identify. Light radiation that has passed through the gas / vapor compound was captured by the photodiode sensor. The emission of LED series light radiation produces different wavelength absorption patterns that will be processed by the Backprogation Neural network as an input signal in the identification and learning process. The results of this experiment show the success rate of the Backpropagation neural network in identifying the type of CO gas and petrodiesel fuel vapor (C14H30) is 80%. \\n \",\"PeriodicalId\":221598,\"journal\":{\"name\":\"Progressive Physics Journal\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progressive Physics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30872/ppj.v1i1.559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progressive Physics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/ppj.v1i1.559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气体分类技术常用于气瓶泄漏气体的检测、空气中有害污染物气体阈值的监测、健康诊断、火灾隐患的早期检测等应用领域。这就要求测量技术具有适应性和鲁棒性,能够动态捕获自由空气中蒸汽或气体化合物变化的信息。本研究进行了分析和识别气体化合物的类型,即CO和石油柴油燃料蒸气(C14H30)。该工具的设计使用了分光光度法原理和反向传播神经网络的计算。其工作原理是吸收波长范围为385nm至1720nm的发光二极管(LED)系列中的光辐射,以穿透您想要识别的CO气体或石油柴油燃料蒸气(C14H30)。通过气体/蒸汽化合物的光辐射被光电二极管传感器捕获。LED系列光辐射的发射产生不同波长的吸收模式,在识别和学习过程中被反向传播神经网络作为输入信号进行处理。实验结果表明,反向传播神经网络识别CO气体和石油柴油蒸汽(C14H30)类型的成功率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aplikasi Metode Spektrofotometri pada Klasifikasi Gas Karbon Monoksida (CO) dan Uap Bahan Bakar Petrodiesel (C14H30)
Gas classification techniques are often found in several applied fields such as, detection of leak gas in gas cylinders, monitoring the threshold of harmful pollutant gases in the air, health diagnostics, early detection of fire hazards, and others. This requires measurement techniques that are adaptive and robust that can dynamically capture information on changes in vapor or gas compounds contained in free air. This research has been conducted to analyze and identify the types of gas compounds, namely CO and petrodiesel fuel vapor (C14H30). The design of this tool uses the principle of spectrophotometry and the calculation of Backprogation Neural Networks. The working principle is that light radiation in the Light Emitting Diode (LED) series, which has a wavelength range of 385nm to 1720nm, is absorbed to penetrate CO gas or petrodiesel fuel vapor (C14H30) that you want to identify. Light radiation that has passed through the gas / vapor compound was captured by the photodiode sensor. The emission of LED series light radiation produces different wavelength absorption patterns that will be processed by the Backprogation Neural network as an input signal in the identification and learning process. The results of this experiment show the success rate of the Backpropagation neural network in identifying the type of CO gas and petrodiesel fuel vapor (C14H30) is 80%.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis Perubahan Sinyal Pneumatic to Electric Menggunakan Algoritma Fuzzy Logic Kaitan Luas Permukaan Pot Bonang Dengan Frekuensi Nada Dasar Yang Dibangkitkan Penentuan Kedalaman dan Sudut Kemiringan Sesar Grindulu di Pacitan Menggunakan Metode Crow Search Algorithm (CSA) pada Data Self-Potential (SP) ANALISIS ISODOSIS TEKNIK TIGA DIMENSI DENGAN LAPANGAN KRANIOSPINAL PADA PASIEN ANAK Penilaian Tingkat Risiko Postur Kerja Menggunakan Metode REBA dan Biomekanika Pada Aktivitas Mengangkat Beban
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1