TFT-LCD面板设计优化的统一参数化技术

Hsuan-Ming Huang, Yiming Li
{"title":"TFT-LCD面板设计优化的统一参数化技术","authors":"Hsuan-Ming Huang, Yiming Li","doi":"10.1109/ASQED.2009.5206278","DOIUrl":null,"url":null,"abstract":"Display is the most power-hungry component in electronics industry. Power-efficient design is strongly required in thin film transistor liquid-crystal display (TFT-LCD) portable products. This work proposes a unified parameterization technique for modeling and multi-objective optimization of TFT-LCD panel using a two-stage response surface model (RSM) and genetic algorithm (GA). To achieve designing specification in circuit and system levels with minimal power consumption simultaneously, a power-delay product is considered as the object function of the TFT-LCD panel optimization. Simulation-validated RSMs and GA are thus implemented into a unified optimization framework for the design optimization problem. Comparing with the conventional design flow using CAD tools, a 21.5% reduction in the power-delay of TFT-LCD panel is achieved with 95% accuracy. Moreover, the time required for the optimization process is significantly reduced by 288 times. We notice that the proposed unified parameterization technique is object flexible and can further optimize the multi-objective system performances (i.e. crosstalk, leakage current, brightness, etc.). The unified parameterization framework may benefit the high performance display panel design in the photonics industry.","PeriodicalId":437303,"journal":{"name":"2009 1st Asia Symposium on Quality Electronic Design","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A unified parameterization technique for TFT-LCD panel design optimization\",\"authors\":\"Hsuan-Ming Huang, Yiming Li\",\"doi\":\"10.1109/ASQED.2009.5206278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Display is the most power-hungry component in electronics industry. Power-efficient design is strongly required in thin film transistor liquid-crystal display (TFT-LCD) portable products. This work proposes a unified parameterization technique for modeling and multi-objective optimization of TFT-LCD panel using a two-stage response surface model (RSM) and genetic algorithm (GA). To achieve designing specification in circuit and system levels with minimal power consumption simultaneously, a power-delay product is considered as the object function of the TFT-LCD panel optimization. Simulation-validated RSMs and GA are thus implemented into a unified optimization framework for the design optimization problem. Comparing with the conventional design flow using CAD tools, a 21.5% reduction in the power-delay of TFT-LCD panel is achieved with 95% accuracy. Moreover, the time required for the optimization process is significantly reduced by 288 times. We notice that the proposed unified parameterization technique is object flexible and can further optimize the multi-objective system performances (i.e. crosstalk, leakage current, brightness, etc.). The unified parameterization framework may benefit the high performance display panel design in the photonics industry.\",\"PeriodicalId\":437303,\"journal\":{\"name\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASQED.2009.5206278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 1st Asia Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASQED.2009.5206278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

显示器是电子工业中最耗电的部件。薄膜晶体管液晶显示(TFT-LCD)便携式产品对节能设计提出了强烈的要求。本文提出了一种基于两阶段响应面模型(RSM)和遗传算法(GA)的TFT-LCD面板统一参数化建模和多目标优化技术。为了以最小的功耗同时达到电路级和系统级的设计要求,将功率延迟积作为TFT-LCD面板优化的目标函数。仿真验证的rsm和遗传算法被实现到一个统一的优化框架中,用于设计优化问题。与使用CAD工具的传统设计流程相比,TFT-LCD面板的功率延迟降低了21.5%,精度达到95%。此外,优化过程所需的时间显著减少了288倍。我们注意到,所提出的统一参数化技术具有对象柔性,可以进一步优化多目标系统性能(如串扰、漏电流、亮度等)。统一的参数化框架将有利于光电子工业中高性能显示面板的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A unified parameterization technique for TFT-LCD panel design optimization
Display is the most power-hungry component in electronics industry. Power-efficient design is strongly required in thin film transistor liquid-crystal display (TFT-LCD) portable products. This work proposes a unified parameterization technique for modeling and multi-objective optimization of TFT-LCD panel using a two-stage response surface model (RSM) and genetic algorithm (GA). To achieve designing specification in circuit and system levels with minimal power consumption simultaneously, a power-delay product is considered as the object function of the TFT-LCD panel optimization. Simulation-validated RSMs and GA are thus implemented into a unified optimization framework for the design optimization problem. Comparing with the conventional design flow using CAD tools, a 21.5% reduction in the power-delay of TFT-LCD panel is achieved with 95% accuracy. Moreover, the time required for the optimization process is significantly reduced by 288 times. We notice that the proposed unified parameterization technique is object flexible and can further optimize the multi-objective system performances (i.e. crosstalk, leakage current, brightness, etc.). The unified parameterization framework may benefit the high performance display panel design in the photonics industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next generation I/O power delivery design through SIPD co-analysis & comprehensive platform validation Effect of local random variation on gate-level delay and leakage statistical analysis Mutual exploration of FinFET technology and circuit design options for implementing compact brute-force latches Automatic error recovery in targetless logic emulation An automated approach for the diagnosis of multiple faults in FPGA interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1