用湿润平衡试验测定镀通孔可焊性的方法

I. Králová, Markéta Klimtová, P. Veselý
{"title":"用湿润平衡试验测定镀通孔可焊性的方法","authors":"I. Králová, Markéta Klimtová, P. Veselý","doi":"10.1109/ISSE57496.2023.10168410","DOIUrl":null,"url":null,"abstract":"The goal of this work was to design a new methodology for the solderability measurement of solder alloys in vias (plated through holes) on printed circuit boards (PCB). As a key measurement device, a wetting balance tester was chosen. The sample holder was modified to be able to fix a copper tube, which simulated the plated through hole (PTH). The copper tubes were covered by a non-wetting coating on the outside; therefore, only the inside of the tube was wetted during immersion. This methodology was used for experiments with SAC305 solder in combination with colophony-based flux in order to verify its suitability. Three solder bath temperatures (255 °C, 270 °C, and 285 °C) were chosen for the measurement. The performed experiment showed the effect of a solder bath temperature and a diameter of PTH on the evaluated parameters, such as zero-cross time, non-wetting time, maximum wetting force, and height of capillary rise of the solder. The higher the temperature, the shorter the zero-cross time and non-wetting time. The bigger the diameter, the higher the maximum wetting force and the longer the non-wetting time. With the increasing vias’ diameter, the decreasing trend of the zero-cross time can be observed. The obtained results prove that the proposed methodology is appropriate for evaluating the alloys’ solderability in vias, providing a complex view of their wetting behavior during soldering.","PeriodicalId":373085,"journal":{"name":"2023 46th International Spring Seminar on Electronics Technology (ISSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology for Solderability Measurement of Plated Through Holes Using Wetting Balance Test\",\"authors\":\"I. Králová, Markéta Klimtová, P. Veselý\",\"doi\":\"10.1109/ISSE57496.2023.10168410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work was to design a new methodology for the solderability measurement of solder alloys in vias (plated through holes) on printed circuit boards (PCB). As a key measurement device, a wetting balance tester was chosen. The sample holder was modified to be able to fix a copper tube, which simulated the plated through hole (PTH). The copper tubes were covered by a non-wetting coating on the outside; therefore, only the inside of the tube was wetted during immersion. This methodology was used for experiments with SAC305 solder in combination with colophony-based flux in order to verify its suitability. Three solder bath temperatures (255 °C, 270 °C, and 285 °C) were chosen for the measurement. The performed experiment showed the effect of a solder bath temperature and a diameter of PTH on the evaluated parameters, such as zero-cross time, non-wetting time, maximum wetting force, and height of capillary rise of the solder. The higher the temperature, the shorter the zero-cross time and non-wetting time. The bigger the diameter, the higher the maximum wetting force and the longer the non-wetting time. With the increasing vias’ diameter, the decreasing trend of the zero-cross time can be observed. The obtained results prove that the proposed methodology is appropriate for evaluating the alloys’ solderability in vias, providing a complex view of their wetting behavior during soldering.\",\"PeriodicalId\":373085,\"journal\":{\"name\":\"2023 46th International Spring Seminar on Electronics Technology (ISSE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 46th International Spring Seminar on Electronics Technology (ISSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE57496.2023.10168410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 46th International Spring Seminar on Electronics Technology (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE57496.2023.10168410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是设计一种新的方法来测量印刷电路板(PCB)上的过孔(镀通孔)中的焊料合金的可焊性。作为关键的测量装置,选用了润湿平衡测试仪。对样品支架进行了改进,使其能够固定铜管,模拟了镀通孔(PTH)。铜管外面覆盖一层不湿润的涂层;因此,在浸泡过程中,只有管的内部被润湿。将该方法用于SAC305焊料与树脂基助焊剂的组合实验,以验证其适用性。选择三种焊锡浴温度(255°C, 270°C和285°C)进行测量。实验结果表明,焊槽温度和PTH直径对焊料的过零时间、非润湿时间、最大润湿力和毛细上升高度等参数均有影响。温度越高,过零时间和不润湿时间越短。直径越大,最大润湿力越大,不润湿时间越长。随着通孔直径的增大,过零时间呈减小趋势。得到的结果证明,所提出的方法适用于评估合金在过孔中的可焊性,为焊接过程中的润湿行为提供了一个复杂的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methodology for Solderability Measurement of Plated Through Holes Using Wetting Balance Test
The goal of this work was to design a new methodology for the solderability measurement of solder alloys in vias (plated through holes) on printed circuit boards (PCB). As a key measurement device, a wetting balance tester was chosen. The sample holder was modified to be able to fix a copper tube, which simulated the plated through hole (PTH). The copper tubes were covered by a non-wetting coating on the outside; therefore, only the inside of the tube was wetted during immersion. This methodology was used for experiments with SAC305 solder in combination with colophony-based flux in order to verify its suitability. Three solder bath temperatures (255 °C, 270 °C, and 285 °C) were chosen for the measurement. The performed experiment showed the effect of a solder bath temperature and a diameter of PTH on the evaluated parameters, such as zero-cross time, non-wetting time, maximum wetting force, and height of capillary rise of the solder. The higher the temperature, the shorter the zero-cross time and non-wetting time. The bigger the diameter, the higher the maximum wetting force and the longer the non-wetting time. With the increasing vias’ diameter, the decreasing trend of the zero-cross time can be observed. The obtained results prove that the proposed methodology is appropriate for evaluating the alloys’ solderability in vias, providing a complex view of their wetting behavior during soldering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the Effect of Solder Material Quantity on Obtaining Strong Solder Joints in LGA Type Assembly Using Statistics Optimization of Phase Transfer Methods of Gold Nanoprisms Analysis of Thermal Influence on the Operation of a Li-Ion Battery Used by an Electric Vehicle Effect of Temperature Shocks on the Resistance of Joints Formed of Conductive Adhesives Investigation of Conductive Organic Films Grown on Carbyne Gas Sensing Nanomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1