Bhaskara Naga Siresha, N. Swathi, R. Kiranmayi, K. Nagabhushanam
{"title":"基于anfiss - fopid混合控制器的无刷直流电动机速度控制","authors":"Bhaskara Naga Siresha, N. Swathi, R. Kiranmayi, K. Nagabhushanam","doi":"10.1109/ICEEICT56924.2023.10156982","DOIUrl":null,"url":null,"abstract":"Brushless DC motor (BLDC) is a type of synchronous motor, gaining high popularity in various industries due to having high efficiency, dynamic response and long operating life. Closed loop control strategies were established for industrial drive applications, and PI, PID, FOPID, and FUZZY controllers were utilized in conjunction with power electronic converters. This paper presents controlling of speed and torque of BLDC motor using hybrid techniques. With the help of FOPID & Fuzzy controller, motor's reference current and inverter DC Bus voltage can be varied respectively. For tuning parameters of FOPID controller, a Modified Harmonic Search (HS) algorithm is employed. Hybrid Fuzzy-FOPID controller is used and implemented in simulink platform. BLDC motor is tested under three different operating conditions such as No-Load, Variable load, variable speed. Simulation results show that Fuzzy-FOPID controller gives greater steady-state error, rated starting torque and ripples throughout the speed profile. To overcome this drawback Hybrid ANFIS-FOPID controller with HS algorithm will be implemented and developed in MATLAB/Simulink platform and evaluates its performance under three different operating conditions. Simulation results show that proposed ANFIS-FOPID controller reduces steady-state error and ripples.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed Control Of Brushless DC Motor Using Hybrid ANFIS-FOPID Controller\",\"authors\":\"Bhaskara Naga Siresha, N. Swathi, R. Kiranmayi, K. Nagabhushanam\",\"doi\":\"10.1109/ICEEICT56924.2023.10156982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brushless DC motor (BLDC) is a type of synchronous motor, gaining high popularity in various industries due to having high efficiency, dynamic response and long operating life. Closed loop control strategies were established for industrial drive applications, and PI, PID, FOPID, and FUZZY controllers were utilized in conjunction with power electronic converters. This paper presents controlling of speed and torque of BLDC motor using hybrid techniques. With the help of FOPID & Fuzzy controller, motor's reference current and inverter DC Bus voltage can be varied respectively. For tuning parameters of FOPID controller, a Modified Harmonic Search (HS) algorithm is employed. Hybrid Fuzzy-FOPID controller is used and implemented in simulink platform. BLDC motor is tested under three different operating conditions such as No-Load, Variable load, variable speed. Simulation results show that Fuzzy-FOPID controller gives greater steady-state error, rated starting torque and ripples throughout the speed profile. To overcome this drawback Hybrid ANFIS-FOPID controller with HS algorithm will be implemented and developed in MATLAB/Simulink platform and evaluates its performance under three different operating conditions. Simulation results show that proposed ANFIS-FOPID controller reduces steady-state error and ripples.\",\"PeriodicalId\":345324,\"journal\":{\"name\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT56924.2023.10156982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10156982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed Control Of Brushless DC Motor Using Hybrid ANFIS-FOPID Controller
Brushless DC motor (BLDC) is a type of synchronous motor, gaining high popularity in various industries due to having high efficiency, dynamic response and long operating life. Closed loop control strategies were established for industrial drive applications, and PI, PID, FOPID, and FUZZY controllers were utilized in conjunction with power electronic converters. This paper presents controlling of speed and torque of BLDC motor using hybrid techniques. With the help of FOPID & Fuzzy controller, motor's reference current and inverter DC Bus voltage can be varied respectively. For tuning parameters of FOPID controller, a Modified Harmonic Search (HS) algorithm is employed. Hybrid Fuzzy-FOPID controller is used and implemented in simulink platform. BLDC motor is tested under three different operating conditions such as No-Load, Variable load, variable speed. Simulation results show that Fuzzy-FOPID controller gives greater steady-state error, rated starting torque and ripples throughout the speed profile. To overcome this drawback Hybrid ANFIS-FOPID controller with HS algorithm will be implemented and developed in MATLAB/Simulink platform and evaluates its performance under three different operating conditions. Simulation results show that proposed ANFIS-FOPID controller reduces steady-state error and ripples.