{"title":"基于对称感知的复杂多组约束下模拟电路布局设计","authors":"Rui He, Lihong Zhang","doi":"10.1109/ASPDAC.2010.5419877","DOIUrl":null,"url":null,"abstract":"This paper presents a solution to handling complex multi-group symmetry constraints in the placement design using transitive closure graph (TCG) representation for analog layouts. We propose a set of symmetric-feasible conditions, which can automatically satisfy symmetry requirements. We also develop a new contour-based packing scheme with time complexity of O(g·n·lgn), where g is the number of symmetry groups and n is the number of the placed cells. Furthermore, we devise a set of perturbation operations with time complexity of O(n). Our experimental results show the effectiveness and superiority of this proposed scheme compared to the other state-of-the-art placement algorithms for analog layout design.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Symmetry-aware TCG-based placement design under complex multi-group constraints for analog circuit layouts\",\"authors\":\"Rui He, Lihong Zhang\",\"doi\":\"10.1109/ASPDAC.2010.5419877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a solution to handling complex multi-group symmetry constraints in the placement design using transitive closure graph (TCG) representation for analog layouts. We propose a set of symmetric-feasible conditions, which can automatically satisfy symmetry requirements. We also develop a new contour-based packing scheme with time complexity of O(g·n·lgn), where g is the number of symmetry groups and n is the number of the placed cells. Furthermore, we devise a set of perturbation operations with time complexity of O(n). Our experimental results show the effectiveness and superiority of this proposed scheme compared to the other state-of-the-art placement algorithms for analog layout design.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetry-aware TCG-based placement design under complex multi-group constraints for analog circuit layouts
This paper presents a solution to handling complex multi-group symmetry constraints in the placement design using transitive closure graph (TCG) representation for analog layouts. We propose a set of symmetric-feasible conditions, which can automatically satisfy symmetry requirements. We also develop a new contour-based packing scheme with time complexity of O(g·n·lgn), where g is the number of symmetry groups and n is the number of the placed cells. Furthermore, we devise a set of perturbation operations with time complexity of O(n). Our experimental results show the effectiveness and superiority of this proposed scheme compared to the other state-of-the-art placement algorithms for analog layout design.