通过众包有效收集数据的实践:聚合、增量重新标签和定价

Alexey Drutsa, Valentina Fedorova, Dmitry Ustalov, Olga Megorskaya, Evfrosiniya Zerminova, Daria Baidakova
{"title":"通过众包有效收集数据的实践:聚合、增量重新标签和定价","authors":"Alexey Drutsa, Valentina Fedorova, Dmitry Ustalov, Olga Megorskaya, Evfrosiniya Zerminova, Daria Baidakova","doi":"10.1145/3336191.3371875","DOIUrl":null,"url":null,"abstract":"In this tutorial, we present a portion of unique industry experience in efficient data labelling via crowdsourcing shared by both leading researchers and engineers from Yandex. We will make an introduction to data labelling via public crowdsourcing marketplaces and will present key components of efficient label collection. This will be followed by a practice session, where participants will choose one of the real label collection tasks, experiment with selecting settings for the labelling process, and launch their label collection project on Yandex.Toloka, one of the largest crowdsourcing marketplaces. The projects will be run on real crowds within the tutorial session. Finally, participants will receive a feedback about their projects and practical advice to make them more efficient. We expect that our tutorial will address an audience with a wide range of background and interests. We do not require specific prerequisite knowledge or skills. We invite beginners, advanced specialists, and researchers to learn how to efficiently collect labelled data.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Practice of Efficient Data Collection via Crowdsourcing: Aggregation, Incremental Relabelling, and Pricing\",\"authors\":\"Alexey Drutsa, Valentina Fedorova, Dmitry Ustalov, Olga Megorskaya, Evfrosiniya Zerminova, Daria Baidakova\",\"doi\":\"10.1145/3336191.3371875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this tutorial, we present a portion of unique industry experience in efficient data labelling via crowdsourcing shared by both leading researchers and engineers from Yandex. We will make an introduction to data labelling via public crowdsourcing marketplaces and will present key components of efficient label collection. This will be followed by a practice session, where participants will choose one of the real label collection tasks, experiment with selecting settings for the labelling process, and launch their label collection project on Yandex.Toloka, one of the largest crowdsourcing marketplaces. The projects will be run on real crowds within the tutorial session. Finally, participants will receive a feedback about their projects and practical advice to make them more efficient. We expect that our tutorial will address an audience with a wide range of background and interests. We do not require specific prerequisite knowledge or skills. We invite beginners, advanced specialists, and researchers to learn how to efficiently collect labelled data.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本教程中,我们将介绍Yandex领先的研究人员和工程师通过众包分享的有效数据标签的部分独特行业经验。我们将通过公共众包市场介绍数据标签,并将介绍有效标签收集的关键组成部分。接下来是一个练习环节,参与者将选择一个真正的标签收集任务,尝试选择标签过程的设置,并在Yandex上启动他们的标签收集项目。Toloka,最大的众包市场之一。这些项目将在辅导课程中在真实人群中进行。最后,参加者将收到有关他们的项目的反馈和实用的建议,以提高他们的效率。我们希望我们的教程能够满足具有广泛背景和兴趣的读者。我们不需要特定的先决知识或技能。我们邀请初学者,高级专家和研究人员学习如何有效地收集标记数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practice of Efficient Data Collection via Crowdsourcing: Aggregation, Incremental Relabelling, and Pricing
In this tutorial, we present a portion of unique industry experience in efficient data labelling via crowdsourcing shared by both leading researchers and engineers from Yandex. We will make an introduction to data labelling via public crowdsourcing marketplaces and will present key components of efficient label collection. This will be followed by a practice session, where participants will choose one of the real label collection tasks, experiment with selecting settings for the labelling process, and launch their label collection project on Yandex.Toloka, one of the largest crowdsourcing marketplaces. The projects will be run on real crowds within the tutorial session. Finally, participants will receive a feedback about their projects and practical advice to make them more efficient. We expect that our tutorial will address an audience with a wide range of background and interests. We do not require specific prerequisite knowledge or skills. We invite beginners, advanced specialists, and researchers to learn how to efficiently collect labelled data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1