Louise Devigne, Vishnu K. Narayanan, François Pasteau, Marie Babel
{"title":"基于低复杂度传感器的电动轮椅导航共享控制","authors":"Louise Devigne, Vishnu K. Narayanan, François Pasteau, Marie Babel","doi":"10.1109/IROS.2016.7759799","DOIUrl":null,"url":null,"abstract":"Motor or visual impairments may prevent a user from steering a wheelchair effectively in indoor environments. In such cases, joystick jerks arising from uncontrolled motions may lead to collisions with obstacles. We here propose a perceptive shared control system that progressively corrects the trajectory as a user manually drives the wheelchair, by means of a sensor-based shared control law capable of smoothly avoiding obstacles. This control law is based on a low complex optimization framework validated through simulations and extensive clinical trials. The provided model uses distance information. Therefore, for low-cost considerations, we use ultrasonic sensors to measure the distances around the wheelchair. The solution therefore provides an efficient assistive tool that does not alter the quality of experience perceived by the user, while ensuring his security in hazardous situations.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Low complex sensor-based shared control for power wheelchair navigation\",\"authors\":\"Louise Devigne, Vishnu K. Narayanan, François Pasteau, Marie Babel\",\"doi\":\"10.1109/IROS.2016.7759799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor or visual impairments may prevent a user from steering a wheelchair effectively in indoor environments. In such cases, joystick jerks arising from uncontrolled motions may lead to collisions with obstacles. We here propose a perceptive shared control system that progressively corrects the trajectory as a user manually drives the wheelchair, by means of a sensor-based shared control law capable of smoothly avoiding obstacles. This control law is based on a low complex optimization framework validated through simulations and extensive clinical trials. The provided model uses distance information. Therefore, for low-cost considerations, we use ultrasonic sensors to measure the distances around the wheelchair. The solution therefore provides an efficient assistive tool that does not alter the quality of experience perceived by the user, while ensuring his security in hazardous situations.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"400 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low complex sensor-based shared control for power wheelchair navigation
Motor or visual impairments may prevent a user from steering a wheelchair effectively in indoor environments. In such cases, joystick jerks arising from uncontrolled motions may lead to collisions with obstacles. We here propose a perceptive shared control system that progressively corrects the trajectory as a user manually drives the wheelchair, by means of a sensor-based shared control law capable of smoothly avoiding obstacles. This control law is based on a low complex optimization framework validated through simulations and extensive clinical trials. The provided model uses distance information. Therefore, for low-cost considerations, we use ultrasonic sensors to measure the distances around the wheelchair. The solution therefore provides an efficient assistive tool that does not alter the quality of experience perceived by the user, while ensuring his security in hazardous situations.