{"title":"通过设置/保持时间的直接牛顿解快速准确的锁存表征","authors":"S. Srivastava, J. Roychowdhury","doi":"10.1109/DATE.2007.364425","DOIUrl":null,"url":null,"abstract":"Characterizing setup/hold times of latches and registers, a crucial component for achieving timing closure of large digital designs, typically occupies months of computation in industries such as Intel and IBM. We present a novel approach to speed up latch characterization by formulating the setup/hold time problem as a scalar nonlinear equation h(tau) = 0 derived using state-transition functions, and then solving this equation by Newton-Raphson (NR). The local quadratic convergence of NR results in rapid improvements in accuracy at every iteration, thereby significantly reducing the computation needed for accurate determination of setup/hold times. We validate the fast convergence and computational advantage of the new method on transmission gate and C2MOS latch/register structures, obtaining speedups of 4-10times over the current standard of binary search","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Rapid and Accurate Latch Characterization via Direct Newton Solution of Setup/Hold Times\",\"authors\":\"S. Srivastava, J. Roychowdhury\",\"doi\":\"10.1109/DATE.2007.364425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing setup/hold times of latches and registers, a crucial component for achieving timing closure of large digital designs, typically occupies months of computation in industries such as Intel and IBM. We present a novel approach to speed up latch characterization by formulating the setup/hold time problem as a scalar nonlinear equation h(tau) = 0 derived using state-transition functions, and then solving this equation by Newton-Raphson (NR). The local quadratic convergence of NR results in rapid improvements in accuracy at every iteration, thereby significantly reducing the computation needed for accurate determination of setup/hold times. We validate the fast convergence and computational advantage of the new method on transmission gate and C2MOS latch/register structures, obtaining speedups of 4-10times over the current standard of binary search\",\"PeriodicalId\":298961,\"journal\":{\"name\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2007.364425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid and Accurate Latch Characterization via Direct Newton Solution of Setup/Hold Times
Characterizing setup/hold times of latches and registers, a crucial component for achieving timing closure of large digital designs, typically occupies months of computation in industries such as Intel and IBM. We present a novel approach to speed up latch characterization by formulating the setup/hold time problem as a scalar nonlinear equation h(tau) = 0 derived using state-transition functions, and then solving this equation by Newton-Raphson (NR). The local quadratic convergence of NR results in rapid improvements in accuracy at every iteration, thereby significantly reducing the computation needed for accurate determination of setup/hold times. We validate the fast convergence and computational advantage of the new method on transmission gate and C2MOS latch/register structures, obtaining speedups of 4-10times over the current standard of binary search