基于事件的相机输出的神经形态下采样

Charles Rizzo, C. Schuman, J. Plank
{"title":"基于事件的相机输出的神经形态下采样","authors":"Charles Rizzo, C. Schuman, J. Plank","doi":"10.1145/3584954.3584962","DOIUrl":null,"url":null,"abstract":"In this work, we address the problem of training a neuromorphic agent to work on data from event-based cameras. Although event-based camera data is much sparser than standard video frames, the sheer number of events can make the observation space too complex to effectively train an agent. We construct multiple neuromorphic networks that downsample the camera data so as to make training more effective. We then perform a case study of training an agent to play the Atari Pong game by converting each frame to events and downsampling them. The final network combines both the downsampling and the agent. We discuss some practical considerations as well.","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neuromorphic Downsampling of Event-Based Camera Output\",\"authors\":\"Charles Rizzo, C. Schuman, J. Plank\",\"doi\":\"10.1145/3584954.3584962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we address the problem of training a neuromorphic agent to work on data from event-based cameras. Although event-based camera data is much sparser than standard video frames, the sheer number of events can make the observation space too complex to effectively train an agent. We construct multiple neuromorphic networks that downsample the camera data so as to make training more effective. We then perform a case study of training an agent to play the Atari Pong game by converting each frame to events and downsampling them. The final network combines both the downsampling and the agent. We discuss some practical considerations as well.\",\"PeriodicalId\":375527,\"journal\":{\"name\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"volume\":\"412 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584954.3584962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3584962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们解决了训练神经形态代理处理基于事件的摄像机数据的问题。尽管基于事件的相机数据比标准视频帧稀疏得多,但事件的绝对数量会使观察空间过于复杂,无法有效地训练代理。我们构建了多个神经形态网络,对相机数据进行下采样,使训练更加有效。然后,我们执行一个案例研究,通过将每个帧转换为事件并对其进行降采样来训练代理玩Atari Pong游戏。最终的网络结合了下采样和代理。我们还讨论了一些实际的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuromorphic Downsampling of Event-Based Camera Output
In this work, we address the problem of training a neuromorphic agent to work on data from event-based cameras. Although event-based camera data is much sparser than standard video frames, the sheer number of events can make the observation space too complex to effectively train an agent. We construct multiple neuromorphic networks that downsample the camera data so as to make training more effective. We then perform a case study of training an agent to play the Atari Pong game by converting each frame to events and downsampling them. The final network combines both the downsampling and the agent. We discuss some practical considerations as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sigma-Delta Networks for Robot Arm Control Easy and efficient spike-based Machine Learning with mlGeNN SupportHDC: Hyperdimensional Computing with Scalable Hypervector Sparsity Exploring Information-Theoretic Criteria to Accelerate the Tuning of Neuromorphic Level-Crossing ADCs Demonstration of neuromorphic sequence learning on a memristive array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1