孟德尔随机化混合尺度治疗效应的鲁棒识别与因果推理估计

Z. Liu, T. Ye, B. Sun, M. Schooling, E. T. Tchetgen Tchetgen
{"title":"孟德尔随机化混合尺度治疗效应的鲁棒识别与因果推理估计","authors":"Z. Liu, T. Ye, B. Sun, M. Schooling, E. T. Tchetgen Tchetgen","doi":"10.1101/2020.09.29.20204420","DOIUrl":null,"url":null,"abstract":"Standard Mendelian randomization analysis can produce biased results if the genetic variant defining the instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment. We provide novel identification conditions for the causal effect of a treatment in presence of unmeasured confounding, by leveraging an invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the invalid IV on the additive scale; and (ii) that the selection bias due to confounding does not vary with the invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroscedastic and thus varies with the invalid IV. Although assumptions (i) and (ii) have, respectively appeared in the IV literature, assumption (iii) has not; we formally establish that their conjunction can identify a causal effect even with an invalid IV subject to pleiotropy. MiSTERI is shown to be particularly advantageous in presence of pervasive heterogeneity of pleiotropic effects on additive scale, a setting in which two recently proposed robust estimation methods MR GxE and MR GENIUS can be severely biased. For estimation, we propose a simple and consistent three-stage estimator that can be used as preliminary estimator to a carefully constructed one-step-update estimator, which is guaranteed to be more efficient under the assumed model. In order to incorporate multiple, possibly correlated and weak IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved accuracy. We have developed an R package MR-MiSTERI for public use of all proposed methods. We illustrate MR MiSTERI in an application using UK Biobank data to evaluate the causal relationship between body mass index and glucose, thus obtaining inferences that are robust to unmeasured confounding, leveraging many weak and potentially invalid candidate genetic IVs. MaWII MiSTERI is shown to be robust to horizontal pleiotropy, violation of IV independence assumption and weak IV bias. Both simulation studies and real data analysis results demonstrate the robustness of the proposed MR MiSTERI methods.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) and Estimation for Causal Inference\",\"authors\":\"Z. Liu, T. Ye, B. Sun, M. Schooling, E. T. Tchetgen Tchetgen\",\"doi\":\"10.1101/2020.09.29.20204420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard Mendelian randomization analysis can produce biased results if the genetic variant defining the instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment. We provide novel identification conditions for the causal effect of a treatment in presence of unmeasured confounding, by leveraging an invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the invalid IV on the additive scale; and (ii) that the selection bias due to confounding does not vary with the invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroscedastic and thus varies with the invalid IV. Although assumptions (i) and (ii) have, respectively appeared in the IV literature, assumption (iii) has not; we formally establish that their conjunction can identify a causal effect even with an invalid IV subject to pleiotropy. MiSTERI is shown to be particularly advantageous in presence of pervasive heterogeneity of pleiotropic effects on additive scale, a setting in which two recently proposed robust estimation methods MR GxE and MR GENIUS can be severely biased. For estimation, we propose a simple and consistent three-stage estimator that can be used as preliminary estimator to a carefully constructed one-step-update estimator, which is guaranteed to be more efficient under the assumed model. In order to incorporate multiple, possibly correlated and weak IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved accuracy. We have developed an R package MR-MiSTERI for public use of all proposed methods. We illustrate MR MiSTERI in an application using UK Biobank data to evaluate the causal relationship between body mass index and glucose, thus obtaining inferences that are robust to unmeasured confounding, leveraging many weak and potentially invalid candidate genetic IVs. MaWII MiSTERI is shown to be robust to horizontal pleiotropy, violation of IV independence assumption and weak IV bias. Both simulation studies and real data analysis results demonstrate the robustness of the proposed MR MiSTERI methods.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.09.29.20204420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.09.29.20204420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如果定义工具变量(IV)的遗传变异是混杂的和/或对感兴趣的结果有水平多效性影响,而不是由治疗介导,标准孟德尔随机化分析可能会产生偏倚的结果。我们通过利用可能违反静脉独立性和排除限制假设的无效静脉,为存在未测量混杂的治疗因果效应提供了新的鉴定条件。提出的孟德尔随机化混合尺度治疗效果稳健识别(MR MiSTERI)方法依赖于(i)治疗效果不随无效IV在加性尺度上变化的假设;(ii)混杂导致的选择偏倚在比值比量表上不随无效IV而变化;(iii)结果的残差是异方差的,因此随无效的IV而变化。尽管假设(i)和(ii)分别出现在IV文献中,但假设(iii)没有;我们正式确立,他们的结合可以识别因果效应,即使无效的静脉多效性。MiSTERI被证明在多效性效应普遍存在异质性的情况下具有特别的优势,在这种情况下,最近提出的两种鲁棒估计方法MR GxE和MR GENIUS可能存在严重偏差。对于估计,我们提出了一个简单且一致的三阶段估计器,它可以作为一个精心构造的一步更新估计器的初步估计器,保证在假设的模型下更有效。为了纳入多个可能相关的弱IVs,这是MR研究中的一个常见挑战,我们开发了一个多弱无效仪器(MR MaWII MiSTERI)方法,以加强识别和提高准确性。我们已经开发了一个R包MR-MiSTERI供公众使用所有建议的方法。我们利用英国生物银行(UK Biobank)的数据来评估体重指数和葡萄糖之间的因果关系,从而利用许多弱的和潜在无效的候选遗传IVs,获得对未测量的混杂因素具有鲁强性的推论。MaWII MiSTERI被证明对水平多效性、违反IV独立性假设和弱IV偏倚具有鲁棒性。仿真研究和实际数据分析结果都证明了所提出的MR MiSTERI方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) and Estimation for Causal Inference
Standard Mendelian randomization analysis can produce biased results if the genetic variant defining the instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment. We provide novel identification conditions for the causal effect of a treatment in presence of unmeasured confounding, by leveraging an invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the invalid IV on the additive scale; and (ii) that the selection bias due to confounding does not vary with the invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroscedastic and thus varies with the invalid IV. Although assumptions (i) and (ii) have, respectively appeared in the IV literature, assumption (iii) has not; we formally establish that their conjunction can identify a causal effect even with an invalid IV subject to pleiotropy. MiSTERI is shown to be particularly advantageous in presence of pervasive heterogeneity of pleiotropic effects on additive scale, a setting in which two recently proposed robust estimation methods MR GxE and MR GENIUS can be severely biased. For estimation, we propose a simple and consistent three-stage estimator that can be used as preliminary estimator to a carefully constructed one-step-update estimator, which is guaranteed to be more efficient under the assumed model. In order to incorporate multiple, possibly correlated and weak IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved accuracy. We have developed an R package MR-MiSTERI for public use of all proposed methods. We illustrate MR MiSTERI in an application using UK Biobank data to evaluate the causal relationship between body mass index and glucose, thus obtaining inferences that are robust to unmeasured confounding, leveraging many weak and potentially invalid candidate genetic IVs. MaWII MiSTERI is shown to be robust to horizontal pleiotropy, violation of IV independence assumption and weak IV bias. Both simulation studies and real data analysis results demonstrate the robustness of the proposed MR MiSTERI methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1