扫描链保持时间违规的诊断、建模与容错

O. Sinanoglu, Philip Schremmer
{"title":"扫描链保持时间违规的诊断、建模与容错","authors":"O. Sinanoglu, Philip Schremmer","doi":"10.1109/DATE.2007.364645","DOIUrl":null,"url":null,"abstract":"Errors in timing closure process during the physical design stage may result in systematic silicon failures, such as scan chain hold time violations, which prohibit the test of manufactured chips. In this paper, we propose a set of techniques that enable the accurate pinpointing of hold time violating scan cells, their modeling and tolerance, paving the way for the generation of valid test data that can be used to test chips with such systematic failures. The process yield is thus restored, as chips that are functional in mission mode can still be identified and shipped out, despite the existence of scan chain hold time failures. The techniques that we propose are non-intrusive, as they utilize only basic scan capabilities, and thus impose no design changes. Scan cells with hold time violations can be identified with maximal possible resolution, enabling the incorporation of the associated impact during the ATPG process and thus the generation of valid test data for the chips with such systematic failures","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Diagnosis, Modeling and Tolerance of Scan Chain Hold-Time Violations\",\"authors\":\"O. Sinanoglu, Philip Schremmer\",\"doi\":\"10.1109/DATE.2007.364645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Errors in timing closure process during the physical design stage may result in systematic silicon failures, such as scan chain hold time violations, which prohibit the test of manufactured chips. In this paper, we propose a set of techniques that enable the accurate pinpointing of hold time violating scan cells, their modeling and tolerance, paving the way for the generation of valid test data that can be used to test chips with such systematic failures. The process yield is thus restored, as chips that are functional in mission mode can still be identified and shipped out, despite the existence of scan chain hold time failures. The techniques that we propose are non-intrusive, as they utilize only basic scan capabilities, and thus impose no design changes. Scan cells with hold time violations can be identified with maximal possible resolution, enabling the incorporation of the associated impact during the ATPG process and thus the generation of valid test data for the chips with such systematic failures\",\"PeriodicalId\":298961,\"journal\":{\"name\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2007.364645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在物理设计阶段,时序关闭过程中的错误可能会导致系统性硅故障,如扫描链保持时间违规,从而禁止对制造芯片进行测试。在本文中,我们提出了一套技术,能够准确地定位保持时间违反扫描单元,它们的建模和公差,为生成有效的测试数据铺平了道路,这些数据可用于测试具有此类系统故障的芯片。尽管存在扫描链保持时间故障,但由于在任务模式下功能正常的芯片仍然可以被识别并发货,因此过程产量得以恢复。我们提出的技术是非侵入性的,因为它们只利用基本的扫描功能,因此不需要改变设计。具有保持时间违规的扫描单元可以以最大可能的分辨率进行识别,从而在ATPG过程中合并相关影响,从而为具有此类系统故障的芯片生成有效的测试数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnosis, Modeling and Tolerance of Scan Chain Hold-Time Violations
Errors in timing closure process during the physical design stage may result in systematic silicon failures, such as scan chain hold time violations, which prohibit the test of manufactured chips. In this paper, we propose a set of techniques that enable the accurate pinpointing of hold time violating scan cells, their modeling and tolerance, paving the way for the generation of valid test data that can be used to test chips with such systematic failures. The process yield is thus restored, as chips that are functional in mission mode can still be identified and shipped out, despite the existence of scan chain hold time failures. The techniques that we propose are non-intrusive, as they utilize only basic scan capabilities, and thus impose no design changes. Scan cells with hold time violations can be identified with maximal possible resolution, enabling the incorporation of the associated impact during the ATPG process and thus the generation of valid test data for the chips with such systematic failures
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction System Level Assessment of an Optical NoC in an MPSoC Platform Modeling and Simulation to the Design of ΣΔ Fractional-N Frequency Synthesizer Tool-support for the analysis of hybrid systems and models Development of an ASIP Enabling Flows in Ethernet Access Using a Retargetable Compilation Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1