神经形态计算RRAM的器件和电路优化

Huaqiang Wu, Peng Yao, B. Gao, Wei Wu, Qingtian Zhang, Wenqiang Zhang, Ning Deng, Dong Wu, H. Wong, Shimeng Yu, H. Qian
{"title":"神经形态计算RRAM的器件和电路优化","authors":"Huaqiang Wu, Peng Yao, B. Gao, Wei Wu, Qingtian Zhang, Wenqiang Zhang, Ning Deng, Dong Wu, H. Wong, Shimeng Yu, H. Qian","doi":"10.1109/IEDM.2017.8268372","DOIUrl":null,"url":null,"abstract":"RRAM is a promising electrical synaptic device for efficient neuromorphic computing. A human face recognition task was demonstrated on a 1k-bit 1T1R array using an online training perceptron network. The RRAM device structure and materials stack were optimized to achieve reliable bidirectional analog switching behavior. A binarized-hidden-layer (BHL) circuit architecture is proposed to minimize the needs of A/D and D/A converters between RRAM crossbars. Several RRAM non-ideal characteristics were carefully evaluated for handwritten digits' recognition task with proposed BHL architecture and modified neural network algorithm.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Device and circuit optimization of RRAM for neuromorphic computing\",\"authors\":\"Huaqiang Wu, Peng Yao, B. Gao, Wei Wu, Qingtian Zhang, Wenqiang Zhang, Ning Deng, Dong Wu, H. Wong, Shimeng Yu, H. Qian\",\"doi\":\"10.1109/IEDM.2017.8268372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RRAM is a promising electrical synaptic device for efficient neuromorphic computing. A human face recognition task was demonstrated on a 1k-bit 1T1R array using an online training perceptron network. The RRAM device structure and materials stack were optimized to achieve reliable bidirectional analog switching behavior. A binarized-hidden-layer (BHL) circuit architecture is proposed to minimize the needs of A/D and D/A converters between RRAM crossbars. Several RRAM non-ideal characteristics were carefully evaluated for handwritten digits' recognition task with proposed BHL architecture and modified neural network algorithm.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

RRAM是一种很有前途的用于高效神经形态计算的电突触装置。使用在线训练感知器网络在1k位1T1R阵列上演示了人脸识别任务。优化了RRAM器件结构和材料堆叠,实现了可靠的双向模拟开关性能。提出了一种二值化隐藏层(BHL)电路结构,以最大限度地减少对RRAM交叉条之间的A/D和D/A转换器的需求。利用提出的BHL体系结构和改进的神经网络算法,仔细评估了手写数字识别任务中RRAM的几种非理想特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Device and circuit optimization of RRAM for neuromorphic computing
RRAM is a promising electrical synaptic device for efficient neuromorphic computing. A human face recognition task was demonstrated on a 1k-bit 1T1R array using an online training perceptron network. The RRAM device structure and materials stack were optimized to achieve reliable bidirectional analog switching behavior. A binarized-hidden-layer (BHL) circuit architecture is proposed to minimize the needs of A/D and D/A converters between RRAM crossbars. Several RRAM non-ideal characteristics were carefully evaluated for handwritten digits' recognition task with proposed BHL architecture and modified neural network algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel triboelectric nanogenerator with high performance and long duration time of sinusoidal current generation Lab on skin™: 3D monolithically integrated zero-energy micro/nanofludics and FD SOI ion sensitive FETs for wearable multi-sensing sweat applications NbO2 based threshold switch device with high operating temperature (>85°C) for steep-slope MOSFET (∼2mV/dec) with ultra-low voltage operation and improved delay time Time-dependent variability in RRAM-based analog neuromorphic system for pattern recognition Energy-efficient all fiber-based local body heat mapping circuitry combining thermistor and memristor for wearable healthcare device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1