使用迭代图像重建算法建模神经网络动力学

R. Steriti, M. Fiddy
{"title":"使用迭代图像重建算法建模神经网络动力学","authors":"R. Steriti, M. Fiddy","doi":"10.1109/IJCNN.1992.227312","DOIUrl":null,"url":null,"abstract":"Image reconstruction problems can be viewed as energy minimization problems and can be mapped onto a Hopfield neural network. For image reconstruction problems the authors describe the Gerchberg-Papoulis iterative method and the priorized discrete Fourier transform (PDFT) algorithm (C.L. Byrne et al., 1983). Both of these can be mapped onto a Hopfield neural network architecture, with the PDFT incorporating an iterative matrix inversion. The equations describing the operation of the Hopfield neural network are formally equivalent to those used in these iterative reconstruction methods, and these iterative reconstruction algorithms are regularized. The PDFT algorithm is a closed form solution to the Gerchberg-Papoulis algorithm when image support information is used. The regularized Gerchberg-Papoulis algorithm can be implemented synchronously, from which it follows that the Hopfield neural network implementation can also converge.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling neural network dynamics using iterative image reconstruction algorithms\",\"authors\":\"R. Steriti, M. Fiddy\",\"doi\":\"10.1109/IJCNN.1992.227312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image reconstruction problems can be viewed as energy minimization problems and can be mapped onto a Hopfield neural network. For image reconstruction problems the authors describe the Gerchberg-Papoulis iterative method and the priorized discrete Fourier transform (PDFT) algorithm (C.L. Byrne et al., 1983). Both of these can be mapped onto a Hopfield neural network architecture, with the PDFT incorporating an iterative matrix inversion. The equations describing the operation of the Hopfield neural network are formally equivalent to those used in these iterative reconstruction methods, and these iterative reconstruction algorithms are regularized. The PDFT algorithm is a closed form solution to the Gerchberg-Papoulis algorithm when image support information is used. The regularized Gerchberg-Papoulis algorithm can be implemented synchronously, from which it follows that the Hopfield neural network implementation can also converge.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像重建问题可以看作是能量最小化问题,可以映射到Hopfield神经网络上。对于图像重建问题,作者描述了Gerchberg-Papoulis迭代法和优先离散傅立叶变换(PDFT)算法(C.L. Byrne et al., 1983)。这两种方法都可以映射到Hopfield神经网络架构上,PDFT结合了迭代矩阵反演。描述Hopfield神经网络运行的方程在形式上等价于这些迭代重建方法中使用的方程,并且这些迭代重建算法是正则化的。当使用图像支持信息时,PDFT算法是Gerchberg-Papoulis算法的封闭解。正则化Gerchberg-Papoulis算法可以同步实现,由此可以得出Hopfield神经网络的实现也可以收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling neural network dynamics using iterative image reconstruction algorithms
Image reconstruction problems can be viewed as energy minimization problems and can be mapped onto a Hopfield neural network. For image reconstruction problems the authors describe the Gerchberg-Papoulis iterative method and the priorized discrete Fourier transform (PDFT) algorithm (C.L. Byrne et al., 1983). Both of these can be mapped onto a Hopfield neural network architecture, with the PDFT incorporating an iterative matrix inversion. The equations describing the operation of the Hopfield neural network are formally equivalent to those used in these iterative reconstruction methods, and these iterative reconstruction algorithms are regularized. The PDFT algorithm is a closed form solution to the Gerchberg-Papoulis algorithm when image support information is used. The regularized Gerchberg-Papoulis algorithm can be implemented synchronously, from which it follows that the Hopfield neural network implementation can also converge.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1