T. Dally, Carola Bilgen, Marek Werner, K. Weinberg
{"title":"内聚元素还是相场断裂:哪一种方法更适合动态断裂分析?","authors":"T. Dally, Carola Bilgen, Marek Werner, K. Weinberg","doi":"10.5772/intechopen.92180","DOIUrl":null,"url":null,"abstract":"Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cohesive Elements or Phase-Field Fracture: Which Method Is Better for Dynamic Fracture Analyses?\",\"authors\":\"T. Dally, Carola Bilgen, Marek Werner, K. Weinberg\",\"doi\":\"10.5772/intechopen.92180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.\",\"PeriodicalId\":259279,\"journal\":{\"name\":\"Modeling and Simulation in Engineering - Selected Problems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling and Simulation in Engineering - Selected Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.92180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling and Simulation in Engineering - Selected Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cohesive Elements or Phase-Field Fracture: Which Method Is Better for Dynamic Fracture Analyses?
Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.