基于主成分分析的风力发电机视角下电网建模

S. Farajzadeh, Mohammad H. Ramezam, P. Nielsen, E. S. Nadimi
{"title":"基于主成分分析的风力发电机视角下电网建模","authors":"S. Farajzadeh, Mohammad H. Ramezam, P. Nielsen, E. S. Nadimi","doi":"10.1109/RTUCON.2015.7343140","DOIUrl":null,"url":null,"abstract":"In this study, we derive an eigenvector-based multivariate model of a power grid from the wind farm's standpoint using dynamic principal component analysis (DPCA). The main advantages of our model over previously developed models are being more realistic and having low complexity. We show that the behaviour of the power grid from the turbines perspective can be represented with the cumulative percent value larger than 95% by only 4 out of 9 registered variables, namely 3 phase voltage and current, frequency! active and reactive power. We further show that using the separation of signal and noise spaces, the dynamics of the power grid can be captured by an optimal time lag shift of two samples. The model is finally validated on a new dataset resulting in modelling error residual less than 5%.","PeriodicalId":389419,"journal":{"name":"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power grid modelling from wind turbine perspective using principal component analysis\",\"authors\":\"S. Farajzadeh, Mohammad H. Ramezam, P. Nielsen, E. S. Nadimi\",\"doi\":\"10.1109/RTUCON.2015.7343140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we derive an eigenvector-based multivariate model of a power grid from the wind farm's standpoint using dynamic principal component analysis (DPCA). The main advantages of our model over previously developed models are being more realistic and having low complexity. We show that the behaviour of the power grid from the turbines perspective can be represented with the cumulative percent value larger than 95% by only 4 out of 9 registered variables, namely 3 phase voltage and current, frequency! active and reactive power. We further show that using the separation of signal and noise spaces, the dynamics of the power grid can be captured by an optimal time lag shift of two samples. The model is finally validated on a new dataset resulting in modelling error residual less than 5%.\",\"PeriodicalId\":389419,\"journal\":{\"name\":\"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTUCON.2015.7343140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2015.7343140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,我们利用动态主成分分析(DPCA)从风电场的角度推导了一个基于特征向量的电网多元模型。与以前开发的模型相比,我们的模型的主要优点是更加真实,并且具有较低的复杂性。我们表明,从涡轮机的角度来看,电网的行为可以用9个注册变量中只有4个的累积百分比值大于95%来表示,即3相电压和电流,频率!有功和无功功率。我们进一步表明,利用信号和噪声空间的分离,电网的动态可以通过两个样本的最佳时滞位移来捕获。最后在新的数据集上对模型进行了验证,模型误差残差小于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power grid modelling from wind turbine perspective using principal component analysis
In this study, we derive an eigenvector-based multivariate model of a power grid from the wind farm's standpoint using dynamic principal component analysis (DPCA). The main advantages of our model over previously developed models are being more realistic and having low complexity. We show that the behaviour of the power grid from the turbines perspective can be represented with the cumulative percent value larger than 95% by only 4 out of 9 registered variables, namely 3 phase voltage and current, frequency! active and reactive power. We further show that using the separation of signal and noise spaces, the dynamics of the power grid can be captured by an optimal time lag shift of two samples. The model is finally validated on a new dataset resulting in modelling error residual less than 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control actions based nonlinear objective function for robust calculations of electrical power system security Selection of standard dynamic model for control systems of mechatronic modules Implementation of fast and accurate modeling method of electric drives University impact on power supply economy, reliability and sustainability enhancement decreasing climate changes System on Chip in modern motion control systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1