基于衬底掺杂优化的铁电FinFET的RTN振幅减小和单阱诱导变化

Zih-Tang Lin, V. Hu
{"title":"基于衬底掺杂优化的铁电FinFET的RTN振幅减小和单阱诱导变化","authors":"Zih-Tang Lin, V. Hu","doi":"10.23919/SNW.2019.8782943","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the impacts of single trap induced Random Telegraph Noise (RTN) on Ferroelectric FinFET (FE-FinFET) with P-type and N-type substrates respectively, compared to FinFET. The trap position dependent RTN amplitude $\\left(\\Delta \\mathbf{I}_{\\mathrm{d} /} / \\mathbf{I}_{\\mathrm{ds}}\\right)$ along the channel length and fin height directions are examined. For FE-FinFET and FinFET at $\\mathbf{V}_{\\mathbf{g s}}$= 0V, N-type substrate with smaller work function lowers the channel conduction band energy near the bottom of fin along the fin height direction. Therefore, the maximum electron current density occurs at the bottom of fin which becomes the most critical position introducing worst RTN amplitude for N-type substrate. However, for FE-FinFET and FinFET with P-type substrate, the worst RTN amplitude occurs at 0.5 fin height position. Therefore, along the fin height direction, the worst RTN amplitude occurs at different position for FE-FinFET/FinFET with N-type and P-type substrates respectively. Our results show that FE-FinFET exhibits smaller RTN amplitude than FinFET due to its smaller trap induced threshold voltage shift $\\left(\\Delta \\mathbf{V}_{\\mathrm{T}}\\right)$. Besides, for both FE-FinFET and FinFET, N-type substrate shows smaller RTN amplitude and RTN induced $\\Delta \\mathbf{V}_{\\mathbf{T}}$ variations than P-type substrate. In other words, RTN induced variations can be suppressed by substrate doping optimization for FE-FinFET and FinFET.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization\",\"authors\":\"Zih-Tang Lin, V. Hu\",\"doi\":\"10.23919/SNW.2019.8782943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the impacts of single trap induced Random Telegraph Noise (RTN) on Ferroelectric FinFET (FE-FinFET) with P-type and N-type substrates respectively, compared to FinFET. The trap position dependent RTN amplitude $\\\\left(\\\\Delta \\\\mathbf{I}_{\\\\mathrm{d} /} / \\\\mathbf{I}_{\\\\mathrm{ds}}\\\\right)$ along the channel length and fin height directions are examined. For FE-FinFET and FinFET at $\\\\mathbf{V}_{\\\\mathbf{g s}}$= 0V, N-type substrate with smaller work function lowers the channel conduction band energy near the bottom of fin along the fin height direction. Therefore, the maximum electron current density occurs at the bottom of fin which becomes the most critical position introducing worst RTN amplitude for N-type substrate. However, for FE-FinFET and FinFET with P-type substrate, the worst RTN amplitude occurs at 0.5 fin height position. Therefore, along the fin height direction, the worst RTN amplitude occurs at different position for FE-FinFET/FinFET with N-type and P-type substrates respectively. Our results show that FE-FinFET exhibits smaller RTN amplitude than FinFET due to its smaller trap induced threshold voltage shift $\\\\left(\\\\Delta \\\\mathbf{V}_{\\\\mathrm{T}}\\\\right)$. Besides, for both FE-FinFET and FinFET, N-type substrate shows smaller RTN amplitude and RTN induced $\\\\Delta \\\\mathbf{V}_{\\\\mathbf{T}}$ variations than P-type substrate. In other words, RTN induced variations can be suppressed by substrate doping optimization for FE-FinFET and FinFET.\",\"PeriodicalId\":170513,\"journal\":{\"name\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2019.8782943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们研究了单阱诱导随机电报噪声(RTN)对p型和n型衬底铁电FinFET (FE-FinFET)的影响,并与FinFET进行了比较。沿通道长度和鳍高方向的陷阱位置依赖RTN振幅$\left(\Delta \mathbf{I}_{\mathrm{d} /} / \mathbf{I}_{\mathrm{ds}}\right)$进行了检查。对于FE-FinFET和$\mathbf{V}_{\mathbf{g s}}$ = 0V时的FinFET,功函数较小的n型衬底沿翅片高度方向降低了靠近翅片底部的通道导带能量。因此,最大的电子电流密度出现在翅片的底部,这是最关键的位置,导致n型衬底的RTN振幅最差。然而,对于FE-FinFET和p型衬底的FinFET,最差的RTN振幅发生在0.5翅片高度位置。因此,沿翅片高度方向,FE-FinFET/ n型基片和p型基片的FinFET的RTN振幅最差的位置不同。我们的研究结果表明,FE-FinFET表现出比FinFET更小的RTN幅度,这是由于其更小的陷阱诱导阈值电压位移$\left(\Delta \mathbf{V}_{\mathrm{T}}\right)$。此外,对于FE-FinFET和FinFET, n型衬底的RTN振幅和RTN诱导的$\Delta \mathbf{V}_{\mathbf{T}}$变化都比p型衬底小。换句话说,可以通过优化FE-FinFET和FinFET的衬底掺杂来抑制RTN诱导的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization
In this paper, we investigate the impacts of single trap induced Random Telegraph Noise (RTN) on Ferroelectric FinFET (FE-FinFET) with P-type and N-type substrates respectively, compared to FinFET. The trap position dependent RTN amplitude $\left(\Delta \mathbf{I}_{\mathrm{d} /} / \mathbf{I}_{\mathrm{ds}}\right)$ along the channel length and fin height directions are examined. For FE-FinFET and FinFET at $\mathbf{V}_{\mathbf{g s}}$= 0V, N-type substrate with smaller work function lowers the channel conduction band energy near the bottom of fin along the fin height direction. Therefore, the maximum electron current density occurs at the bottom of fin which becomes the most critical position introducing worst RTN amplitude for N-type substrate. However, for FE-FinFET and FinFET with P-type substrate, the worst RTN amplitude occurs at 0.5 fin height position. Therefore, along the fin height direction, the worst RTN amplitude occurs at different position for FE-FinFET/FinFET with N-type and P-type substrates respectively. Our results show that FE-FinFET exhibits smaller RTN amplitude than FinFET due to its smaller trap induced threshold voltage shift $\left(\Delta \mathbf{V}_{\mathrm{T}}\right)$. Besides, for both FE-FinFET and FinFET, N-type substrate shows smaller RTN amplitude and RTN induced $\Delta \mathbf{V}_{\mathbf{T}}$ variations than P-type substrate. In other words, RTN induced variations can be suppressed by substrate doping optimization for FE-FinFET and FinFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Charge Effects on Semiconductor-Metal Phase Transition in Mono-layer MoTe2 Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization Atomistic Study of Transport Characteristics in Sub-1nm Ultra-narrow Molybdenum Disulfide (MoS2) Nanoribbon Field Effect Transistors Si Electron Nano-Aspirator towards Emerging Hydro-Electronics 3D Heterogeneous Integration with 2D Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1