{"title":"用神经遗传方法加速多目标控制系统设计","authors":"N. M. Duarte, A. Ruano, C. Fonseca, P. Fleming","doi":"10.1109/CEC.2000.870322","DOIUrl":null,"url":null,"abstract":"Designing control systems using multiobjective genetic algorithms can lead to a substantial computational load as a result of the repeated evaluation of the multiple objectives and the population-based nature of the search. A neural network approach, based on radial basis functions, is introduced to alleviate this problem by providing computationally inexpensive estimates of objective values during the search. A straightforward example demonstrates the utility of the approach.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Accelerating multi-objective control system design using a neuro-genetic approach\",\"authors\":\"N. M. Duarte, A. Ruano, C. Fonseca, P. Fleming\",\"doi\":\"10.1109/CEC.2000.870322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing control systems using multiobjective genetic algorithms can lead to a substantial computational load as a result of the repeated evaluation of the multiple objectives and the population-based nature of the search. A neural network approach, based on radial basis functions, is introduced to alleviate this problem by providing computationally inexpensive estimates of objective values during the search. A straightforward example demonstrates the utility of the approach.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerating multi-objective control system design using a neuro-genetic approach
Designing control systems using multiobjective genetic algorithms can lead to a substantial computational load as a result of the repeated evaluation of the multiple objectives and the population-based nature of the search. A neural network approach, based on radial basis functions, is introduced to alleviate this problem by providing computationally inexpensive estimates of objective values during the search. A straightforward example demonstrates the utility of the approach.