利用移动网络数据预测自然灾害导致的疏散目的地

Muhammad Rizal Khaefi, P.Jutta Prahara, Muhammad Rheza, Dikara Alkarisya, G. Hodge
{"title":"利用移动网络数据预测自然灾害导致的疏散目的地","authors":"Muhammad Rizal Khaefi, P.Jutta Prahara, Muhammad Rheza, Dikara Alkarisya, G. Hodge","doi":"10.1109/ICICOS.2018.8621662","DOIUrl":null,"url":null,"abstract":"Exposed to a variety of natural hazards, Vanuatu is one of the most disaster-prone countries in the South Pacific. The Government plays a central role in disaster response and has articulated a need for information on disaster-induced displacement in order to target resources. This paper aims to inform preparation and planning by developing a method to predict evacuation destinations before a disaster happens by applying machine learning approaches to mobile network data. In this study, the eruption of Mount Monaro in 2017 is chosen to test the prediction performance of the model in a real disaster scenario. We explored 273 features, extracted from over one-hundred-million anonymized mobile network records, to describe (a) basic phone usage, (b) active user behavior, (c) spatial behavior, (d) regularity, and (e) diversity. Our results show that supervised machine learning methods produce promising results in predicting evacuation destinations.","PeriodicalId":438473,"journal":{"name":"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Evacuation Destinations due to a Natural Hazard using Mobile Network Data\",\"authors\":\"Muhammad Rizal Khaefi, P.Jutta Prahara, Muhammad Rheza, Dikara Alkarisya, G. Hodge\",\"doi\":\"10.1109/ICICOS.2018.8621662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exposed to a variety of natural hazards, Vanuatu is one of the most disaster-prone countries in the South Pacific. The Government plays a central role in disaster response and has articulated a need for information on disaster-induced displacement in order to target resources. This paper aims to inform preparation and planning by developing a method to predict evacuation destinations before a disaster happens by applying machine learning approaches to mobile network data. In this study, the eruption of Mount Monaro in 2017 is chosen to test the prediction performance of the model in a real disaster scenario. We explored 273 features, extracted from over one-hundred-million anonymized mobile network records, to describe (a) basic phone usage, (b) active user behavior, (c) spatial behavior, (d) regularity, and (e) diversity. Our results show that supervised machine learning methods produce promising results in predicting evacuation destinations.\",\"PeriodicalId\":438473,\"journal\":{\"name\":\"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICOS.2018.8621662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICOS.2018.8621662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面对各种自然灾害,瓦努阿图是南太平洋最容易发生灾害的国家之一。政府在救灾方面起着中心作用,并明确表示需要关于灾害造成的流离失所的资料,以便有针对性地提供资源。本文旨在通过开发一种方法,通过将机器学习方法应用于移动网络数据,在灾难发生之前预测疏散目的地,从而为准备和规划提供信息。本研究选择2017年莫纳罗火山喷发事件,在真实灾害场景中检验模型的预测性能。我们从超过1亿条匿名移动网络记录中提取了273个特征,以描述(a)基本电话使用情况,(b)活跃用户行为,(c)空间行为,(d)规律性和(e)多样性。我们的研究结果表明,监督机器学习方法在预测疏散目的地方面产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Evacuation Destinations due to a Natural Hazard using Mobile Network Data
Exposed to a variety of natural hazards, Vanuatu is one of the most disaster-prone countries in the South Pacific. The Government plays a central role in disaster response and has articulated a need for information on disaster-induced displacement in order to target resources. This paper aims to inform preparation and planning by developing a method to predict evacuation destinations before a disaster happens by applying machine learning approaches to mobile network data. In this study, the eruption of Mount Monaro in 2017 is chosen to test the prediction performance of the model in a real disaster scenario. We explored 273 features, extracted from over one-hundred-million anonymized mobile network records, to describe (a) basic phone usage, (b) active user behavior, (c) spatial behavior, (d) regularity, and (e) diversity. Our results show that supervised machine learning methods produce promising results in predicting evacuation destinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing Website E-Learning Based on Integration of Technology Enhance Learning and Human Computer Interaction Copyright A Distributional Model of Sensitive Values on p-Sensitive in Multiple Sensitive Attributes Real-time Detection of Data Completeness Degree for Traffic Simulation Using Text Similarity and Time Relevance of Data from Social Media Implementation of e-New Local Search based Multiobjective Optimization Algorithm and Multiobjective Co-variance based Artificial Bee Colony Algorithm in Stocks Portfolio Optimization Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1