基于读干扰人工神经网络耦合LDPC ECC的3D-TLC NAND闪存读热数据误差修正

Daiki Kojima, Toshiki Nakamura, K. Takeuchi
{"title":"基于读干扰人工神经网络耦合LDPC ECC的3D-TLC NAND闪存读热数据误差修正","authors":"Daiki Kojima, Toshiki Nakamura, K. Takeuchi","doi":"10.23919/SNW.2019.8782950","DOIUrl":null,"url":null,"abstract":"Read-disturb Modeled Artificial Neural Network Coupled LDPC ECC (RDNN-LDPC) is proposed to correct errors of read-hot data for 3D-TLC NAND flash. Conventional ANN-LDPC is optimized to correct errors of read-cold data. However, ANN-LDPC does not correct errors of read-hot data. To correct errors of read-hot data, this paper analyzes how input parameter and model change. As a result, measured results of proposed RDNN-LDPC extend acceptable read cycle of 3D-TLC NAND flash by 10-times.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Error Crrection for Read-hot Data in 3D-TLC NAND Flash by Read-disturb Modeled Artificial Neural Network Coupled LDPC ECC\",\"authors\":\"Daiki Kojima, Toshiki Nakamura, K. Takeuchi\",\"doi\":\"10.23919/SNW.2019.8782950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Read-disturb Modeled Artificial Neural Network Coupled LDPC ECC (RDNN-LDPC) is proposed to correct errors of read-hot data for 3D-TLC NAND flash. Conventional ANN-LDPC is optimized to correct errors of read-cold data. However, ANN-LDPC does not correct errors of read-hot data. To correct errors of read-hot data, this paper analyzes how input parameter and model change. As a result, measured results of proposed RDNN-LDPC extend acceptable read cycle of 3D-TLC NAND flash by 10-times.\",\"PeriodicalId\":170513,\"journal\":{\"name\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2019.8782950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对3D-TLC NAND闪存中读热数据的错误,提出了基于读干扰模型的人工神经网络耦合LDPC ECC (RDNN-LDPC)算法。对传统的ANN-LDPC进行了优化,以纠正读冷数据的错误。但是,ANN-LDPC不能纠正读热数据的错误。为了纠正读热数据的错误,本文分析了输入参数和模型的变化情况。因此,RDNN-LDPC的测量结果将3D-TLC NAND闪存的可接受读取周期延长了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error Crrection for Read-hot Data in 3D-TLC NAND Flash by Read-disturb Modeled Artificial Neural Network Coupled LDPC ECC
Read-disturb Modeled Artificial Neural Network Coupled LDPC ECC (RDNN-LDPC) is proposed to correct errors of read-hot data for 3D-TLC NAND flash. Conventional ANN-LDPC is optimized to correct errors of read-cold data. However, ANN-LDPC does not correct errors of read-hot data. To correct errors of read-hot data, this paper analyzes how input parameter and model change. As a result, measured results of proposed RDNN-LDPC extend acceptable read cycle of 3D-TLC NAND flash by 10-times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Charge Effects on Semiconductor-Metal Phase Transition in Mono-layer MoTe2 Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization Atomistic Study of Transport Characteristics in Sub-1nm Ultra-narrow Molybdenum Disulfide (MoS2) Nanoribbon Field Effect Transistors Si Electron Nano-Aspirator towards Emerging Hydro-Electronics 3D Heterogeneous Integration with 2D Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1