{"title":"负电容使FinFET和FDSOI可以扩展到2nm节点","authors":"V. Hu, P. Chiu, A. Sachid, C. Hu","doi":"10.1109/IEDM.2017.8268443","DOIUrl":null,"url":null,"abstract":"The scaling potential of negative capacitance FinFET and FDSOI (NC-FinFET and NC-FDSOI) are studied for technology nodes down to 2nm. According to ITRS 2.0, FinFET scaling ends at 6/5nm node due to the scaling limits of fin width (6 nm Wfm) and FDSOI scaling ends at 11/10 nm due to scaling limit of the channel thickness (3 nm Tch). We present TCAD simulation evidence that using these Wfin and Tch, and negative capacitance enables FinFET and FDSOI scaling to 2 nm node. NC-FinFET and NC-FDSOI at 2 nm node show Ioff < 100nA/μm and 10%∼29% higher Ion compared with 2nm FinFET(97μA/μm Ioff) and FDSOI(46μA/μm Ioff). NC-FDSOI exhibits similarly strong back-gate bias effects on Ioff and Ion compared with FDSOI.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Negative capacitance enables FinFET and FDSOI scaling to 2 nm node\",\"authors\":\"V. Hu, P. Chiu, A. Sachid, C. Hu\",\"doi\":\"10.1109/IEDM.2017.8268443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling potential of negative capacitance FinFET and FDSOI (NC-FinFET and NC-FDSOI) are studied for technology nodes down to 2nm. According to ITRS 2.0, FinFET scaling ends at 6/5nm node due to the scaling limits of fin width (6 nm Wfm) and FDSOI scaling ends at 11/10 nm due to scaling limit of the channel thickness (3 nm Tch). We present TCAD simulation evidence that using these Wfin and Tch, and negative capacitance enables FinFET and FDSOI scaling to 2 nm node. NC-FinFET and NC-FDSOI at 2 nm node show Ioff < 100nA/μm and 10%∼29% higher Ion compared with 2nm FinFET(97μA/μm Ioff) and FDSOI(46μA/μm Ioff). NC-FDSOI exhibits similarly strong back-gate bias effects on Ioff and Ion compared with FDSOI.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Negative capacitance enables FinFET and FDSOI scaling to 2 nm node
The scaling potential of negative capacitance FinFET and FDSOI (NC-FinFET and NC-FDSOI) are studied for technology nodes down to 2nm. According to ITRS 2.0, FinFET scaling ends at 6/5nm node due to the scaling limits of fin width (6 nm Wfm) and FDSOI scaling ends at 11/10 nm due to scaling limit of the channel thickness (3 nm Tch). We present TCAD simulation evidence that using these Wfin and Tch, and negative capacitance enables FinFET and FDSOI scaling to 2 nm node. NC-FinFET and NC-FDSOI at 2 nm node show Ioff < 100nA/μm and 10%∼29% higher Ion compared with 2nm FinFET(97μA/μm Ioff) and FDSOI(46μA/μm Ioff). NC-FDSOI exhibits similarly strong back-gate bias effects on Ioff and Ion compared with FDSOI.