Muhammad Hassan, A. Bermak, Amine Ait Si Ali, A. Amira
{"title":"基于延迟模式相似性度量的电子鼻气体识别","authors":"Muhammad Hassan, A. Bermak, Amine Ait Si Ali, A. Amira","doi":"10.1109/ICM.2014.7071841","DOIUrl":null,"url":null,"abstract":"Recently, implementation friendly bio-inspired coding schemes have been developed for an electronic nose system to recognise different gases. In these schemes, a logarithmic time-domain encoding technique is used to covert the response vector of the sensor array in an electronic nose into a latency pattern. These schemes assume a unique temporal sequence of latencies, referred to as a rank order, for each target gas. However, poor repeatability and sensor drift limit the performance of these schemes. In this paper, we use angular separation between the latency patterns of the sensor array for gas identification. An electronic nose system containing an array of commercially available gas sensors and a radio frequency module is developed and characterized in the laboratory environment with four gases. Experimental data is used to compare the performance of our coding scheme with existing bio-inspired coding schemes and commonly used pattern recognition algorithms.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gas identification in electronic nose by using similarity measure between latency patterns\",\"authors\":\"Muhammad Hassan, A. Bermak, Amine Ait Si Ali, A. Amira\",\"doi\":\"10.1109/ICM.2014.7071841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, implementation friendly bio-inspired coding schemes have been developed for an electronic nose system to recognise different gases. In these schemes, a logarithmic time-domain encoding technique is used to covert the response vector of the sensor array in an electronic nose into a latency pattern. These schemes assume a unique temporal sequence of latencies, referred to as a rank order, for each target gas. However, poor repeatability and sensor drift limit the performance of these schemes. In this paper, we use angular separation between the latency patterns of the sensor array for gas identification. An electronic nose system containing an array of commercially available gas sensors and a radio frequency module is developed and characterized in the laboratory environment with four gases. Experimental data is used to compare the performance of our coding scheme with existing bio-inspired coding schemes and commonly used pattern recognition algorithms.\",\"PeriodicalId\":107354,\"journal\":{\"name\":\"2014 26th International Conference on Microelectronics (ICM)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 26th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2014.7071841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gas identification in electronic nose by using similarity measure between latency patterns
Recently, implementation friendly bio-inspired coding schemes have been developed for an electronic nose system to recognise different gases. In these schemes, a logarithmic time-domain encoding technique is used to covert the response vector of the sensor array in an electronic nose into a latency pattern. These schemes assume a unique temporal sequence of latencies, referred to as a rank order, for each target gas. However, poor repeatability and sensor drift limit the performance of these schemes. In this paper, we use angular separation between the latency patterns of the sensor array for gas identification. An electronic nose system containing an array of commercially available gas sensors and a radio frequency module is developed and characterized in the laboratory environment with four gases. Experimental data is used to compare the performance of our coding scheme with existing bio-inspired coding schemes and commonly used pattern recognition algorithms.