基于最优在线整定的自学习模糊神经网络(SLFNN)用于涡轮增压汽车注水控制

Chi-Hsu Wang, Jung-Sheng Wen
{"title":"基于最优在线整定的自学习模糊神经网络(SLFNN)用于涡轮增压汽车注水控制","authors":"Chi-Hsu Wang, Jung-Sheng Wen","doi":"10.1109/ICNSC.2005.1461308","DOIUrl":null,"url":null,"abstract":"This paper proposes a new architecture of self-learning fuzzy-neural-network (SLFNN) for water injection control in a turbo-charged automobile. The major advantage of SLFNN is that no off-line training is needed for initialization. The SLFNN will initialize itself with a random set of initial weighting factors (normally zeros) and a specifically designed on-line optimal training algorithm is invoked immediately after the engine of the automobile is turn on. The on-line optimal training can guarantee that the weighting factors will be directed toward a maximum-error-reduced direction. Although this SLFNN can also be used as a controller for fuel injection, we adopt the SLFNN as the water injection controller to reduce the knocking effects of a turbo-charged engine and therefore the emission is cleaner with less petrol consumption. Real implementation has been performed in a Saab NG 900 (1994 -1998) automobile with excellent results.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-learning FNN (SLFNN) with optimal on-line tuning for water injection control in a turbo charged automobile\",\"authors\":\"Chi-Hsu Wang, Jung-Sheng Wen\",\"doi\":\"10.1109/ICNSC.2005.1461308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new architecture of self-learning fuzzy-neural-network (SLFNN) for water injection control in a turbo-charged automobile. The major advantage of SLFNN is that no off-line training is needed for initialization. The SLFNN will initialize itself with a random set of initial weighting factors (normally zeros) and a specifically designed on-line optimal training algorithm is invoked immediately after the engine of the automobile is turn on. The on-line optimal training can guarantee that the weighting factors will be directed toward a maximum-error-reduced direction. Although this SLFNN can also be used as a controller for fuel injection, we adopt the SLFNN as the water injection controller to reduce the knocking effects of a turbo-charged engine and therefore the emission is cleaner with less petrol consumption. Real implementation has been performed in a Saab NG 900 (1994 -1998) automobile with excellent results.\",\"PeriodicalId\":313251,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2005.1461308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于涡轮增压汽车注水控制的自学习模糊神经网络(SLFNN)结构。SLFNN的主要优点是初始化不需要离线训练。SLFNN将使用一组随机的初始加权因子(通常为零)初始化自身,并且在汽车发动机启动后立即调用专门设计的在线最优训练算法。在线最优训练可以保证权重因子向误差减小最大的方向运动。虽然该SLFNN也可以用作燃油喷射控制器,但我们采用SLFNN作为注水控制器来减少涡轮增压发动机的爆震效应,因此排放更清洁,汽油消耗更少。在Saab NG 900(1994 -1998)汽车上进行了实际实施,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-learning FNN (SLFNN) with optimal on-line tuning for water injection control in a turbo charged automobile
This paper proposes a new architecture of self-learning fuzzy-neural-network (SLFNN) for water injection control in a turbo-charged automobile. The major advantage of SLFNN is that no off-line training is needed for initialization. The SLFNN will initialize itself with a random set of initial weighting factors (normally zeros) and a specifically designed on-line optimal training algorithm is invoked immediately after the engine of the automobile is turn on. The on-line optimal training can guarantee that the weighting factors will be directed toward a maximum-error-reduced direction. Although this SLFNN can also be used as a controller for fuel injection, we adopt the SLFNN as the water injection controller to reduce the knocking effects of a turbo-charged engine and therefore the emission is cleaner with less petrol consumption. Real implementation has been performed in a Saab NG 900 (1994 -1998) automobile with excellent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic robust stability analysis for Markovian jumping neural networks with time delays Modeling and performance evaluation of collision resolution algorithms for LonWorks control networks The organization model research of SM crowd Forced and constrained consensus among cooperating agents Routing in stochastic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1