基于机器学习算法的入侵检测系统

Sandy Victor Amanoul, A. Abdulazeez, Diyar Qader Zeebare, F. Y. Ahmed
{"title":"基于机器学习算法的入侵检测系统","authors":"Sandy Victor Amanoul, A. Abdulazeez, Diyar Qader Zeebare, F. Y. Ahmed","doi":"10.1109/I2CACIS52118.2021.9495897","DOIUrl":null,"url":null,"abstract":"Networks are important today in the world and data security has become a crucial area of study. An IDS monitors the status of the software and hardware of the network. Curing problems for current IDSs remain they improve detection precision, decrease false alarm rates and track unknown attacks after decades of advancement. Many researchers have focused on the development of IDSs using machine learning approaches to solve the above-described problems. With the high precision of computer teachings, the basic distinctions between usual and irregular data can be recognized automatically. Unknown threats may also be detected because of their generalizability via machine learning system. This paper suggests a taxonomy of IDS, which uses the primary dimension of data objects to classify and sum up IDS literatures based on and dependent on deep learning. We assume this kind of taxonomy is sufficient for researchers in cyber security. We selected three algorithms from machine learning (Bayes Net, Random Forest, Neural Network) and two algorithms of deep learning (RNN, LSTM), and we tested them on KDD cup 99 and evaluated accuracy algorithms, and we used a program WEKA To calculate the accuracy.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intrusion Detection Systems Based on Machine Learning Algorithms\",\"authors\":\"Sandy Victor Amanoul, A. Abdulazeez, Diyar Qader Zeebare, F. Y. Ahmed\",\"doi\":\"10.1109/I2CACIS52118.2021.9495897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks are important today in the world and data security has become a crucial area of study. An IDS monitors the status of the software and hardware of the network. Curing problems for current IDSs remain they improve detection precision, decrease false alarm rates and track unknown attacks after decades of advancement. Many researchers have focused on the development of IDSs using machine learning approaches to solve the above-described problems. With the high precision of computer teachings, the basic distinctions between usual and irregular data can be recognized automatically. Unknown threats may also be detected because of their generalizability via machine learning system. This paper suggests a taxonomy of IDS, which uses the primary dimension of data objects to classify and sum up IDS literatures based on and dependent on deep learning. We assume this kind of taxonomy is sufficient for researchers in cyber security. We selected three algorithms from machine learning (Bayes Net, Random Forest, Neural Network) and two algorithms of deep learning (RNN, LSTM), and we tested them on KDD cup 99 and evaluated accuracy algorithms, and we used a program WEKA To calculate the accuracy.\",\"PeriodicalId\":210770,\"journal\":{\"name\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS52118.2021.9495897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

网络在当今世界非常重要,数据安全已经成为一个重要的研究领域。IDS监视网络的软件和硬件状态。经过几十年的发展,目前的ids仍然可以提高检测精度,降低误报率并跟踪未知攻击。许多研究人员专注于使用机器学习方法开发ids来解决上述问题。利用计算机教学的高精度,可以自动识别正常和不规则数据的基本区别。未知的威胁也可以通过机器学习系统检测到,因为它们的通用性。本文提出了一种基于深度学习和依赖深度学习的IDS分类方法,该方法利用数据对象的初级维度对IDS文献进行分类和总结。我们认为这种分类法对网络安全研究人员来说是足够的。我们从机器学习中选择了三种算法(Bayes Net、Random Forest、Neural Network)和两种深度学习算法(RNN、LSTM),在KDD cup 99上进行了测试并评估了准确率算法,并使用WEKA程序计算了准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusion Detection Systems Based on Machine Learning Algorithms
Networks are important today in the world and data security has become a crucial area of study. An IDS monitors the status of the software and hardware of the network. Curing problems for current IDSs remain they improve detection precision, decrease false alarm rates and track unknown attacks after decades of advancement. Many researchers have focused on the development of IDSs using machine learning approaches to solve the above-described problems. With the high precision of computer teachings, the basic distinctions between usual and irregular data can be recognized automatically. Unknown threats may also be detected because of their generalizability via machine learning system. This paper suggests a taxonomy of IDS, which uses the primary dimension of data objects to classify and sum up IDS literatures based on and dependent on deep learning. We assume this kind of taxonomy is sufficient for researchers in cyber security. We selected three algorithms from machine learning (Bayes Net, Random Forest, Neural Network) and two algorithms of deep learning (RNN, LSTM), and we tested them on KDD cup 99 and evaluated accuracy algorithms, and we used a program WEKA To calculate the accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Linear Analytical Mathematical Modelling of a Hybrid Fixed-Wing Unmanned Aerial Vehicle in Pusher Configuration Efficacy of Heterogeneous Ensemble Assisted Machine Learning Model for Binary and Multi-Class Network Intrusion Detection Arrhythmia Detection using Electrocardiogram and Phonocardiogram Pattern using Integrated Signal Processing Algorithms with the Aid of Convolutional Neural Networks Reduced Computational Burden Model Predictive Current Control of Asymmetric Stacked Multi-Level Inverter Based STATCOM Analysis of Kaffir Lime Oil Chemical Compounds by Gas Chromatography-Mass Spectrometry (GC-MS) and Z-Score Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1