基于神经网络的吉他音箱箱体脉冲响应实时数字仿真

Tantep Sinjanakhom, S. Chivapreecha
{"title":"基于神经网络的吉他音箱箱体脉冲响应实时数字仿真","authors":"Tantep Sinjanakhom, S. Chivapreecha","doi":"10.1109/KST53302.2022.9727233","DOIUrl":null,"url":null,"abstract":"This This paper presents a real-time signal processing system in which a neural network generates the impulse response (IR) of a Marshall 1960A guitar cabinet with 25W Celestion speakers based on user-specified parameters. The parameters include the microphone type, position of the speaker on which the microphone is mounted, distance between the microphone and the cabinet, and off-axis tilting angle. The trained model of neural network can generate the impulse response for a speaker cabinet, as well as the sound of settings not included in training set. Cross-correlation, error-to-signal ratio, power spectral density error, and magnitude-squared coherence were all utilized to assess the model's output. Mean Opinion Score listening tests were performed to determine the similarity of the convolved guitar signals. According to the results, the emulated cabinet sounds were perceived to be nearly identical to the original sounds. The performance of the real-time audio plugin implementation is proved to be computationally efficient. Because raw IR data for each microphone configuration does not need to be saved directly to the PC's memory, utilizing it in music production work can be more convenient, allowing the user to modify the parameters while hearing the differences without having to repeat the IR file loading procedure.","PeriodicalId":433638,"journal":{"name":"2022 14th International Conference on Knowledge and Smart Technology (KST)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Networks for Real-Time Digital Emulation of Guitar Speaker Cabinet Impulse Response\",\"authors\":\"Tantep Sinjanakhom, S. Chivapreecha\",\"doi\":\"10.1109/KST53302.2022.9727233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This This paper presents a real-time signal processing system in which a neural network generates the impulse response (IR) of a Marshall 1960A guitar cabinet with 25W Celestion speakers based on user-specified parameters. The parameters include the microphone type, position of the speaker on which the microphone is mounted, distance between the microphone and the cabinet, and off-axis tilting angle. The trained model of neural network can generate the impulse response for a speaker cabinet, as well as the sound of settings not included in training set. Cross-correlation, error-to-signal ratio, power spectral density error, and magnitude-squared coherence were all utilized to assess the model's output. Mean Opinion Score listening tests were performed to determine the similarity of the convolved guitar signals. According to the results, the emulated cabinet sounds were perceived to be nearly identical to the original sounds. The performance of the real-time audio plugin implementation is proved to be computationally efficient. Because raw IR data for each microphone configuration does not need to be saved directly to the PC's memory, utilizing it in music production work can be more convenient, allowing the user to modify the parameters while hearing the differences without having to repeat the IR file loading procedure.\",\"PeriodicalId\":433638,\"journal\":{\"name\":\"2022 14th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST53302.2022.9727233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST53302.2022.9727233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种实时信号处理系统,该系统利用神经网络根据用户设定的参数产生带有25W Celestion扬声器的Marshall 1960A吉他箱的脉冲响应(IR)。参数包括麦克风类型、安装麦克风的扬声器位置、麦克风与机柜的距离、离轴倾斜度等。训练后的神经网络模型可以生成扬声器箱体的脉冲响应,以及未包含在训练集中的设置的声音。互相关、误差信号比、功率谱密度误差和幅度平方相干性都被用来评估模型的输出。平均意见得分听力测试进行,以确定卷积吉他信号的相似性。根据结果,模拟的橱柜声音被认为与原始声音几乎相同。该实时音频插件实现的性能被证明是计算效率高的。由于每个麦克风配置的原始IR数据不需要直接保存到PC的内存中,因此在音乐制作工作中利用它可以更方便,允许用户在听到差异的同时修改参数,而无需重复IR文件加载过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Networks for Real-Time Digital Emulation of Guitar Speaker Cabinet Impulse Response
This This paper presents a real-time signal processing system in which a neural network generates the impulse response (IR) of a Marshall 1960A guitar cabinet with 25W Celestion speakers based on user-specified parameters. The parameters include the microphone type, position of the speaker on which the microphone is mounted, distance between the microphone and the cabinet, and off-axis tilting angle. The trained model of neural network can generate the impulse response for a speaker cabinet, as well as the sound of settings not included in training set. Cross-correlation, error-to-signal ratio, power spectral density error, and magnitude-squared coherence were all utilized to assess the model's output. Mean Opinion Score listening tests were performed to determine the similarity of the convolved guitar signals. According to the results, the emulated cabinet sounds were perceived to be nearly identical to the original sounds. The performance of the real-time audio plugin implementation is proved to be computationally efficient. Because raw IR data for each microphone configuration does not need to be saved directly to the PC's memory, utilizing it in music production work can be more convenient, allowing the user to modify the parameters while hearing the differences without having to repeat the IR file loading procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised and Ensemble-based Anomaly Detection Method for Network Security Unsupervised concept identification from a large corpus of research documents GSAP: A Hybrid GRU and Self-Attention Based Model for Dual Medical NLP Tasks Beyond fear go viral: A machine learning study on infodemic detection during covid-19 pandemic Blockchain for Transport (BC4 T), Performance Simulations of Blockchain Network for Emission Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1