基于粒子群优化的智能电网无功调度技术研究

I. Pisica, G. Taylor, Sebastian Traistaru
{"title":"基于粒子群优化的智能电网无功调度技术研究","authors":"I. Pisica, G. Taylor, Sebastian Traistaru","doi":"10.1109/UPEC.2014.6934596","DOIUrl":null,"url":null,"abstract":"This paper gives an overview of the Particle Swarm Optimization technique with the aim of investigating its applicability to minimizing losses in a power distribution system. The suitability of this method is investigated by emphasizing the impact of its intrinsic parameters on the results. The investigation employs particle swarm optimization on a test system by controlling the generator voltages, transformer taps and the reactive power in the capacitor banks for each load bus. In total it contains 33 control variables: 5 generators (not including the terminal bus), 4 transformers and 24 capacitor banks. A theoretical approach of the PSO is given in the beginning, followed by the simulation results and analyses.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Particle Swarm Optimization as technique for reactive power dispatch in smart grids\",\"authors\":\"I. Pisica, G. Taylor, Sebastian Traistaru\",\"doi\":\"10.1109/UPEC.2014.6934596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives an overview of the Particle Swarm Optimization technique with the aim of investigating its applicability to minimizing losses in a power distribution system. The suitability of this method is investigated by emphasizing the impact of its intrinsic parameters on the results. The investigation employs particle swarm optimization on a test system by controlling the generator voltages, transformer taps and the reactive power in the capacitor banks for each load bus. In total it contains 33 control variables: 5 generators (not including the terminal bus), 4 transformers and 24 capacitor banks. A theoretical approach of the PSO is given in the beginning, followed by the simulation results and analyses.\",\"PeriodicalId\":414838,\"journal\":{\"name\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2014.6934596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文概述了粒子群优化技术,目的是研究其在配电系统中最小化损耗的适用性。着重分析了该方法的内在参数对结果的影响,探讨了该方法的适用性。通过控制发电机电压、变压器分接和各负载母线电容器组的无功功率,对测试系统进行了粒子群优化。它总共包含33个控制变量:5个发电机(不包括终端总线),4个变压器和24个电容器组。首先给出了粒子群算法的理论方法,然后给出了仿真结果和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Particle Swarm Optimization as technique for reactive power dispatch in smart grids
This paper gives an overview of the Particle Swarm Optimization technique with the aim of investigating its applicability to minimizing losses in a power distribution system. The suitability of this method is investigated by emphasizing the impact of its intrinsic parameters on the results. The investigation employs particle swarm optimization on a test system by controlling the generator voltages, transformer taps and the reactive power in the capacitor banks for each load bus. In total it contains 33 control variables: 5 generators (not including the terminal bus), 4 transformers and 24 capacitor banks. A theoretical approach of the PSO is given in the beginning, followed by the simulation results and analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transposing phasor equation into instantaneous values equations using Hilbert transform Optimal design of a hybrid distributed generation system Modelling of reduced GB transmission system in PSCAD/EMTDC Medium-voltage cable inductive coupling to metallic pipelines: A comprehensive study UPS system: How can future technology and topology improve the energy efficiency in data centers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1