笔记本电脑被动散热极限的实验模拟

W.K. Coxe, G. Solbrekken, K. Yazawa, A. Bar-Cohen
{"title":"笔记本电脑被动散热极限的实验模拟","authors":"W.K. Coxe, G. Solbrekken, K. Yazawa, A. Bar-Cohen","doi":"10.1109/ITHERM.2002.1012433","DOIUrl":null,"url":null,"abstract":"Rapid expansion of the portable computing market segment coupled with ever increasing power dissipation and severe battery power limitations are combining to bring new importance to the development of minimum-energy thermal solutions for notebook-type computers. Passive cooling provides a very attractive thermal management option for such systems. Determination of the amount of heat that can be passively dissipated from the outer surfaces of a notebook computer provides thermal designers with a well-defined performance target and a quantitative demarcation between actively and passively cooled equipment categories. Previous work has analytically and numerically estimated the passive cooling limit from the external surfaces of a 305/spl times/248 mm notebook and found that as much as 38.8 Watts could be dissipated. The current paper describes the experimental validation of the natural convection models, underpinning those results, and the apparatus used to obtain the necessary data. The measurement error and repeatability in this apparatus are also described. In addition to validating the isolated, isothermal natural convection models, experiments were conducted to explore \"real world\" behavior, such as 3-D flow effects and interactions between heat dissipating surfaces. The experimental results are used to refine the theoretical limits on passive cooling.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Experimental modeling of the passive cooling limit of notebook computers\",\"authors\":\"W.K. Coxe, G. Solbrekken, K. Yazawa, A. Bar-Cohen\",\"doi\":\"10.1109/ITHERM.2002.1012433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid expansion of the portable computing market segment coupled with ever increasing power dissipation and severe battery power limitations are combining to bring new importance to the development of minimum-energy thermal solutions for notebook-type computers. Passive cooling provides a very attractive thermal management option for such systems. Determination of the amount of heat that can be passively dissipated from the outer surfaces of a notebook computer provides thermal designers with a well-defined performance target and a quantitative demarcation between actively and passively cooled equipment categories. Previous work has analytically and numerically estimated the passive cooling limit from the external surfaces of a 305/spl times/248 mm notebook and found that as much as 38.8 Watts could be dissipated. The current paper describes the experimental validation of the natural convection models, underpinning those results, and the apparatus used to obtain the necessary data. The measurement error and repeatability in this apparatus are also described. In addition to validating the isolated, isothermal natural convection models, experiments were conducted to explore \\\"real world\\\" behavior, such as 3-D flow effects and interactions between heat dissipating surfaces. The experimental results are used to refine the theoretical limits on passive cooling.\",\"PeriodicalId\":299933,\"journal\":{\"name\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2002.1012433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

便携式计算市场的迅速扩张,加上不断增加的功耗和严重的电池功率限制,使开发笔记本型计算机的最低能耗热解决方案变得更加重要。被动冷却为这类系统提供了一个非常有吸引力的热管理选择。确定从笔记本电脑外表面被动散热的热量为散热设计师提供了一个明确的性能目标和主动和被动冷却设备类别之间的定量界限。以前的工作已经从分析和数值上估计了305/spl倍/248毫米笔记本电脑的外表面的被动冷却极限,并发现多达38.8瓦可以消散。本文描述了自然对流模型的实验验证,支持这些结果,以及用于获取必要数据的设备。文中还描述了该装置的测量误差和可重复性。除了验证孤立的等温自然对流模型外,还进行了实验以探索“真实世界”的行为,例如三维流动效应和散热表面之间的相互作用。实验结果用于改进被动冷却的理论极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental modeling of the passive cooling limit of notebook computers
Rapid expansion of the portable computing market segment coupled with ever increasing power dissipation and severe battery power limitations are combining to bring new importance to the development of minimum-energy thermal solutions for notebook-type computers. Passive cooling provides a very attractive thermal management option for such systems. Determination of the amount of heat that can be passively dissipated from the outer surfaces of a notebook computer provides thermal designers with a well-defined performance target and a quantitative demarcation between actively and passively cooled equipment categories. Previous work has analytically and numerically estimated the passive cooling limit from the external surfaces of a 305/spl times/248 mm notebook and found that as much as 38.8 Watts could be dissipated. The current paper describes the experimental validation of the natural convection models, underpinning those results, and the apparatus used to obtain the necessary data. The measurement error and repeatability in this apparatus are also described. In addition to validating the isolated, isothermal natural convection models, experiments were conducted to explore "real world" behavior, such as 3-D flow effects and interactions between heat dissipating surfaces. The experimental results are used to refine the theoretical limits on passive cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of lumped R/sub th/C/sub th/ and approximate steady-state methods for reducing transient analysis solution time Multistage thermoelectric micro coolers A new approach to the design of complex heat transfer systems: notebook-size computer design Multimedia thermal CAD system for electronics multilayer structures with compact cold plate Modeling superconformal electrodeposition in trenches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1