海面结构崩塌现场灾害数据点云配准技术比较

Ananya Bal, Robert Ladig, Pranav Goyal, J. Galeotti, H. Choset, David F. Merrick, Robin R. Murphy
{"title":"海面结构崩塌现场灾害数据点云配准技术比较","authors":"Ananya Bal, Robert Ladig, Pranav Goyal, J. Galeotti, H. Choset, David F. Merrick, Robin R. Murphy","doi":"10.1109/SSRR56537.2022.10018779","DOIUrl":null,"url":null,"abstract":"3D representations of geographical surfaces in the form of dense point clouds can be a valuable tool for documenting and reconstructing a structural collapse, such as the 2021 Champlain Towers Condominium collapse in Surfside, Florida. Point cloud data reconstructed from aerial footage taken by uncrewed aerial systems at frequent intervals from a dynamic search and rescue scene poses significant challenges. Properly aligning large point clouds in this context, or registering them, poses noteworthy issues as they capture multiple regions whose geometries change over time. These regions denote dynamic features such as excavation machinery, cones marking boundaries and the structural collapse rubble itself. In this paper, the performances of commonly used point cloud registration methods for dynamic scenes present in the raw data are studied. The use of Iterative Closest Point (ICP), Rigid - Coherent Point Drift (CPD) and PointNetLK for registering dense point clouds, reconstructed sequentially over a time-frame of five days, is studied and evaluated. All methods are compared by error in performance, execution time, and robustness with a concluding analysis and a judgement of the preeminent method for the specific data at hand is provided.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparison of Point Cloud Registration Techniques for on-site Disaster Data from the Surfside Structural Collapse\",\"authors\":\"Ananya Bal, Robert Ladig, Pranav Goyal, J. Galeotti, H. Choset, David F. Merrick, Robin R. Murphy\",\"doi\":\"10.1109/SSRR56537.2022.10018779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D representations of geographical surfaces in the form of dense point clouds can be a valuable tool for documenting and reconstructing a structural collapse, such as the 2021 Champlain Towers Condominium collapse in Surfside, Florida. Point cloud data reconstructed from aerial footage taken by uncrewed aerial systems at frequent intervals from a dynamic search and rescue scene poses significant challenges. Properly aligning large point clouds in this context, or registering them, poses noteworthy issues as they capture multiple regions whose geometries change over time. These regions denote dynamic features such as excavation machinery, cones marking boundaries and the structural collapse rubble itself. In this paper, the performances of commonly used point cloud registration methods for dynamic scenes present in the raw data are studied. The use of Iterative Closest Point (ICP), Rigid - Coherent Point Drift (CPD) and PointNetLK for registering dense point clouds, reconstructed sequentially over a time-frame of five days, is studied and evaluated. All methods are compared by error in performance, execution time, and robustness with a concluding analysis and a judgement of the preeminent method for the specific data at hand is provided.\",\"PeriodicalId\":272862,\"journal\":{\"name\":\"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR56537.2022.10018779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

密集点云形式的地理表面3D表示可以成为记录和重建结构倒塌的有价值的工具,例如2021年佛罗里达州Surfside的Champlain Towers condo倒塌。由无人驾驶航空系统从动态搜索和救援场景中频繁拍摄的航拍镜头重建的点云数据提出了重大挑战。在这种情况下,适当地对齐大型点云,或者对它们进行注册,会带来值得注意的问题,因为它们会捕获多个几何形状随时间变化的区域。这些区域表示动态特征,如挖掘机械、标志边界的锥体和结构崩塌的碎石本身。本文研究了常用点云配准方法对原始数据中存在的动态场景的配准性能。利用迭代最近点(ICP)、刚性相干点漂移(CPD)和PointNetLK对密集点云进行配准,在5天的时间框架内依次重建,并进行了研究和评估。对所有方法在性能、执行时间和鲁棒性方面的误差进行了比较,并对手头的具体数据进行了总结分析和判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Point Cloud Registration Techniques for on-site Disaster Data from the Surfside Structural Collapse
3D representations of geographical surfaces in the form of dense point clouds can be a valuable tool for documenting and reconstructing a structural collapse, such as the 2021 Champlain Towers Condominium collapse in Surfside, Florida. Point cloud data reconstructed from aerial footage taken by uncrewed aerial systems at frequent intervals from a dynamic search and rescue scene poses significant challenges. Properly aligning large point clouds in this context, or registering them, poses noteworthy issues as they capture multiple regions whose geometries change over time. These regions denote dynamic features such as excavation machinery, cones marking boundaries and the structural collapse rubble itself. In this paper, the performances of commonly used point cloud registration methods for dynamic scenes present in the raw data are studied. The use of Iterative Closest Point (ICP), Rigid - Coherent Point Drift (CPD) and PointNetLK for registering dense point clouds, reconstructed sequentially over a time-frame of five days, is studied and evaluated. All methods are compared by error in performance, execution time, and robustness with a concluding analysis and a judgement of the preeminent method for the specific data at hand is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit An innovative pick-up and transport robot system for casualty evacuation DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments Multi-Robot System for Autonomous Cooperative Counter-UAS Missions: Design, Integration, and Field Testing Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1