通过交替换流电路提高直流断路器性能

Sudipta Sen, S. Mehraeen, F. Ferdowsi
{"title":"通过交替换流电路提高直流断路器性能","authors":"Sudipta Sen, S. Mehraeen, F. Ferdowsi","doi":"10.1109/ECCE.2018.8558468","DOIUrl":null,"url":null,"abstract":"Fault interruption in de circuits is more challenging than in their ac counterparts. The absence of natural current zero crossing along with resistive nature of the dc grids creates a significantly higher fault current to disrupt at the dc circuit breakers. Available approaches to break dc fault currents include creating forced zero-crossing current at the breaker or employing solid-state circuit breakers. This paper summarizes the current dc breaker technologies and proposes a new alternate method. The proposed mechanism is a mechanical circuit breaker that utilizes two switches, of which one generates zero-crossing with an alternate oscillatory circuit for the other one, which can be a conventional zero crossing-based ac breaker and is used in the main circuit. This is different than the conventional single-switch commute-and-absorb method currently used. It is shown that the proposed oscillatory circuit improves the fault current extinction and significantly reduces the voltage rate-of-change while creating the current zero-crossing faster, when compared to the available technology. Thus, the proposed mechanism is capable of interrupting high de currents with minimal arc through a less expensive ac circuit breaker. Simulation and hardware results are provided to show the efficiency of the proposed breaker.","PeriodicalId":415217,"journal":{"name":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving DC Circuit Breaker Performance Through an Alternate Commutating Circuit\",\"authors\":\"Sudipta Sen, S. Mehraeen, F. Ferdowsi\",\"doi\":\"10.1109/ECCE.2018.8558468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault interruption in de circuits is more challenging than in their ac counterparts. The absence of natural current zero crossing along with resistive nature of the dc grids creates a significantly higher fault current to disrupt at the dc circuit breakers. Available approaches to break dc fault currents include creating forced zero-crossing current at the breaker or employing solid-state circuit breakers. This paper summarizes the current dc breaker technologies and proposes a new alternate method. The proposed mechanism is a mechanical circuit breaker that utilizes two switches, of which one generates zero-crossing with an alternate oscillatory circuit for the other one, which can be a conventional zero crossing-based ac breaker and is used in the main circuit. This is different than the conventional single-switch commute-and-absorb method currently used. It is shown that the proposed oscillatory circuit improves the fault current extinction and significantly reduces the voltage rate-of-change while creating the current zero-crossing faster, when compared to the available technology. Thus, the proposed mechanism is capable of interrupting high de currents with minimal arc through a less expensive ac circuit breaker. Simulation and hardware results are provided to show the efficiency of the proposed breaker.\",\"PeriodicalId\":415217,\"journal\":{\"name\":\"2018 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2018.8558468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2018.8558468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

断路器的故障中断比交流断路器的故障中断更具挑战性。自然电流过零的缺失,加上直流电网的电阻性,在直流断路器处产生了明显更高的故障电流。切断直流故障电流的可用方法包括在断路器处创建强制过零电流或使用固态断路器。本文对现有直流断路器技术进行了总结,提出了一种新的替代方法。所提出的机制是一种利用两个开关的机械断路器,其中一个开关产生过零,另一个开关产生交替振荡电路,这可以是一个传统的基于过零的交流断路器,用于主电路。这与目前使用的传统单开关整流吸收方法不同。结果表明,与现有技术相比,所提出的振荡电路提高了故障电流消能,显著降低了电压变化率,同时使电流过零速度更快。因此,所提出的机制能够通过较便宜的交流断路器以最小的电弧中断高电流。仿真和硬件结果表明了该断路器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving DC Circuit Breaker Performance Through an Alternate Commutating Circuit
Fault interruption in de circuits is more challenging than in their ac counterparts. The absence of natural current zero crossing along with resistive nature of the dc grids creates a significantly higher fault current to disrupt at the dc circuit breakers. Available approaches to break dc fault currents include creating forced zero-crossing current at the breaker or employing solid-state circuit breakers. This paper summarizes the current dc breaker technologies and proposes a new alternate method. The proposed mechanism is a mechanical circuit breaker that utilizes two switches, of which one generates zero-crossing with an alternate oscillatory circuit for the other one, which can be a conventional zero crossing-based ac breaker and is used in the main circuit. This is different than the conventional single-switch commute-and-absorb method currently used. It is shown that the proposed oscillatory circuit improves the fault current extinction and significantly reduces the voltage rate-of-change while creating the current zero-crossing faster, when compared to the available technology. Thus, the proposed mechanism is capable of interrupting high de currents with minimal arc through a less expensive ac circuit breaker. Simulation and hardware results are provided to show the efficiency of the proposed breaker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control Schemes for Reducing the Second Harmonic Current in Two-Stage Single-Phase Converter: An Overview from DC-Bus Port-Impedance Characterization Minimizing Reactive Current of a High Gain Dual Active Bridge Converter for Supercapacitor Based Energy Storage System Integration High Frequency Small Signal Model for Inverse Charge Constant On-Time (IQCOT) Control Airgap Search Coil-Based Detection of Damper Bar Failures in Salient Pole Synchronous Motors On-line Compensation of Periodic Error in Resolver Signals for PMSM Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1