基于学习的细胞感知顾客退货缺陷诊断

S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar
{"title":"基于学习的细胞感知顾客退货缺陷诊断","authors":"S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar","doi":"10.1109/ETS48528.2020.9131601","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new framework for cell-aware defect diagnosis of customer returns based on supervised learning. The proposed method comprehensively deals with static and dynamic defects that may occur in real circuits. A Naive Bayes classifier is used to precisely identify defect candidates. Results obtained on benchmark circuits, and comparison with a commercial cell-aware diagnosis tool, demonstrate the efficiency of the proposed approach in terms of accuracy and resolution.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning-Based Cell-Aware Defect Diagnosis of Customer Returns\",\"authors\":\"S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar\",\"doi\":\"10.1109/ETS48528.2020.9131601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new framework for cell-aware defect diagnosis of customer returns based on supervised learning. The proposed method comprehensively deals with static and dynamic defects that may occur in real circuits. A Naive Bayes classifier is used to precisely identify defect candidates. Results obtained on benchmark circuits, and comparison with a commercial cell-aware diagnosis tool, demonstrate the efficiency of the proposed approach in terms of accuracy and resolution.\",\"PeriodicalId\":267309,\"journal\":{\"name\":\"2020 IEEE European Test Symposium (ETS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS48528.2020.9131601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于监督学习的顾客退货细胞感知缺陷诊断框架。该方法综合处理了实际电路中可能出现的静态缺陷和动态缺陷。使用朴素贝叶斯分类器精确识别候选缺陷。在基准电路上获得的结果,以及与商业细胞感知诊断工具的比较,证明了所提出的方法在准确性和分辨率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning-Based Cell-Aware Defect Diagnosis of Customer Returns
In this paper, we propose a new framework for cell-aware defect diagnosis of customer returns based on supervised learning. The proposed method comprehensively deals with static and dynamic defects that may occur in real circuits. A Naive Bayes classifier is used to precisely identify defect candidates. Results obtained on benchmark circuits, and comparison with a commercial cell-aware diagnosis tool, demonstrate the efficiency of the proposed approach in terms of accuracy and resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determined-Safe Faults Identification: A step towards ISO26262 hardware compliant designs Accurate Measurements of Small Resistances in Vertical Interconnects with Small Aspect Ratios Anomaly Detection in Embedded Systems Using Power and Memory Side Channels The Risk of Outsourcing: Hidden SCA Trojans in Third-Party IP-Cores Threaten Cryptographic ICs A SIFT-based Waveform Clustering Method for aiding analog/mixed-signal IC Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1