{"title":"通过监测动态电源电流对CMOS逻辑电路进行随机电流测试","authors":"H. Tamamoto, H. Yokoyama, Y. Narita","doi":"10.1109/EURDAC.1992.246200","DOIUrl":null,"url":null,"abstract":"Assuming a stuck-at type fault, the authors discuss current testing for CMOS logic circuits where the random patterns generated by a linear feedback shift register (LFSR) are applied, and a dynamic power supply current is monitored. The LFSR is modified such that there exists a feedback from the outputs of a circuit under test to the LSFR. This modification is intended for amplifying the effect of a fault near a primary output on the dynamic current. In order to distinguish the dynamic current of a faulty circuit from the one of a fault-free circuit, two methods are discussed. One is the method where the waveform of the dynamic current is recognized using a neural network, and the other is the method where the mean dynamic current is calculated. Simulation results show that a high fault coverage can be obtained using a small number of test vectors.<<ETX>>","PeriodicalId":218056,"journal":{"name":"Proceedings EURO-DAC '92: European Design Automation Conference","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Random current testing for CMOS logic circuits by monitoring a dynamic power supply current\",\"authors\":\"H. Tamamoto, H. Yokoyama, Y. Narita\",\"doi\":\"10.1109/EURDAC.1992.246200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming a stuck-at type fault, the authors discuss current testing for CMOS logic circuits where the random patterns generated by a linear feedback shift register (LFSR) are applied, and a dynamic power supply current is monitored. The LFSR is modified such that there exists a feedback from the outputs of a circuit under test to the LSFR. This modification is intended for amplifying the effect of a fault near a primary output on the dynamic current. In order to distinguish the dynamic current of a faulty circuit from the one of a fault-free circuit, two methods are discussed. One is the method where the waveform of the dynamic current is recognized using a neural network, and the other is the method where the mean dynamic current is calculated. Simulation results show that a high fault coverage can be obtained using a small number of test vectors.<<ETX>>\",\"PeriodicalId\":218056,\"journal\":{\"name\":\"Proceedings EURO-DAC '92: European Design Automation Conference\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings EURO-DAC '92: European Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURDAC.1992.246200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings EURO-DAC '92: European Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURDAC.1992.246200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random current testing for CMOS logic circuits by monitoring a dynamic power supply current
Assuming a stuck-at type fault, the authors discuss current testing for CMOS logic circuits where the random patterns generated by a linear feedback shift register (LFSR) are applied, and a dynamic power supply current is monitored. The LFSR is modified such that there exists a feedback from the outputs of a circuit under test to the LSFR. This modification is intended for amplifying the effect of a fault near a primary output on the dynamic current. In order to distinguish the dynamic current of a faulty circuit from the one of a fault-free circuit, two methods are discussed. One is the method where the waveform of the dynamic current is recognized using a neural network, and the other is the method where the mean dynamic current is calculated. Simulation results show that a high fault coverage can be obtained using a small number of test vectors.<>