基于面部轮廓和耳朵的性别分类的分层和判别特征包

Guangpeng Zhang, Yunhong Wang
{"title":"基于面部轮廓和耳朵的性别分类的分层和判别特征包","authors":"Guangpeng Zhang, Yunhong Wang","doi":"10.1109/IJCB.2011.6117590","DOIUrl":null,"url":null,"abstract":"Gender is an important demographic attribute of human beings, automatic face based gender classification has promising applications in various fields. Previous methods mainly deal with frontal face images, which in many cases can not be easily obtained. In contrast, we concentrate on gender classification based on face profiles and ear images in this paper. Hierarchical and discriminative bag of features technique is proposed to extract powerful features which are classified by support vector classification (SVC) with histogram intersection kernel. With the output of SVC, fusion of multi-modalities is performed at the score level based on Bayesian analysis to improve the accuracy. Experiments are conducted using texture images of the UND biometrics data sets Collection F, and average classification accuracy of 97.65% is achieved, which is comparable to the state of the art. Our work can be used in cooperate with existing frontal face based methods for accurate multi-view gender classification.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Hierarchical and discriminative bag of features for face profile and ear based gender classification\",\"authors\":\"Guangpeng Zhang, Yunhong Wang\",\"doi\":\"10.1109/IJCB.2011.6117590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender is an important demographic attribute of human beings, automatic face based gender classification has promising applications in various fields. Previous methods mainly deal with frontal face images, which in many cases can not be easily obtained. In contrast, we concentrate on gender classification based on face profiles and ear images in this paper. Hierarchical and discriminative bag of features technique is proposed to extract powerful features which are classified by support vector classification (SVC) with histogram intersection kernel. With the output of SVC, fusion of multi-modalities is performed at the score level based on Bayesian analysis to improve the accuracy. Experiments are conducted using texture images of the UND biometrics data sets Collection F, and average classification accuracy of 97.65% is achieved, which is comparable to the state of the art. Our work can be used in cooperate with existing frontal face based methods for accurate multi-view gender classification.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

性别是人类重要的人口统计属性,基于人脸的性别自动分类在各个领域都有很好的应用前景。以前的方法主要是处理正面人脸图像,在很多情况下,这些图像不容易获得。相比之下,本文主要关注基于人脸和耳朵图像的性别分类。提出了分层判别特征包提取技术,利用直方图交核支持向量分类(SVC)对强特征进行分类。在SVC输出的基础上,基于贝叶斯分析在评分水平上进行多模态融合,提高准确率。使用UND生物特征数据集Collection F的纹理图像进行实验,平均分类准确率达到97.65%,与目前的技术水平相当。我们的工作可以与现有的基于正面人脸的方法配合使用,以准确地进行多视图性别分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical and discriminative bag of features for face profile and ear based gender classification
Gender is an important demographic attribute of human beings, automatic face based gender classification has promising applications in various fields. Previous methods mainly deal with frontal face images, which in many cases can not be easily obtained. In contrast, we concentrate on gender classification based on face profiles and ear images in this paper. Hierarchical and discriminative bag of features technique is proposed to extract powerful features which are classified by support vector classification (SVC) with histogram intersection kernel. With the output of SVC, fusion of multi-modalities is performed at the score level based on Bayesian analysis to improve the accuracy. Experiments are conducted using texture images of the UND biometrics data sets Collection F, and average classification accuracy of 97.65% is achieved, which is comparable to the state of the art. Our work can be used in cooperate with existing frontal face based methods for accurate multi-view gender classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1