多视图学习的深度传递张量分解

Penghao Jiang, Ke Xin, Chunxi Li
{"title":"多视图学习的深度传递张量分解","authors":"Penghao Jiang, Ke Xin, Chunxi Li","doi":"10.1109/ICDMW58026.2022.00067","DOIUrl":null,"url":null,"abstract":"This paper studies the data sparsity problem in multi-view learning. To solve data sparsity problem in multi-view ratings, we propose a generic architecture of deep transfer tensor factorization (DTTF) by integrating deep learning and cross-domain tensor factorization, where the side information is embedded to provide effective compensation for the tensor sparsity. Then we exhibit instantiation of our architecture by combining stacked denoising autoencoder (SDAE) and CANDE-COMPIPARAFAC (CP) tensor factorization in both source and target domains, where the side information of both users and items is tightly coupled with the sparse multi-view ratings and the latent factors are learned based on the joint optimization. We tightly couple the multi-view ratings and the side information to improve cross-domain tensor factorization based recommendations. Experimental results on real-world datasets demonstrate that our DTTF schemes outperform state-of-the-art methods on multi-view rating predictions.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Transfer Tensor Factorization for Multi-View Learning\",\"authors\":\"Penghao Jiang, Ke Xin, Chunxi Li\",\"doi\":\"10.1109/ICDMW58026.2022.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the data sparsity problem in multi-view learning. To solve data sparsity problem in multi-view ratings, we propose a generic architecture of deep transfer tensor factorization (DTTF) by integrating deep learning and cross-domain tensor factorization, where the side information is embedded to provide effective compensation for the tensor sparsity. Then we exhibit instantiation of our architecture by combining stacked denoising autoencoder (SDAE) and CANDE-COMPIPARAFAC (CP) tensor factorization in both source and target domains, where the side information of both users and items is tightly coupled with the sparse multi-view ratings and the latent factors are learned based on the joint optimization. We tightly couple the multi-view ratings and the side information to improve cross-domain tensor factorization based recommendations. Experimental results on real-world datasets demonstrate that our DTTF schemes outperform state-of-the-art methods on multi-view rating predictions.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了多视图学习中的数据稀疏性问题。为了解决多视图评级中的数据稀疏性问题,我们提出了一种融合深度学习和跨域张量分解的深度传递张量分解(deep transfer tensor factorization, DTTF)通用架构,其中嵌入了侧信息,为张量稀疏性提供了有效的补偿。然后,我们在源域和目标域中结合堆栈去噪自编码器(SDAE)和CANDE-COMPIPARAFAC (CP)张量分解,展示了我们的架构实例化,其中用户和项目的侧信息与稀疏多视图评级紧密耦合,并基于联合优化学习潜在因素。我们将多视图评分和侧信息紧密耦合,以改进基于跨域张量分解的推荐。在真实数据集上的实验结果表明,我们的DTTF方案在多视图评级预测方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Transfer Tensor Factorization for Multi-View Learning
This paper studies the data sparsity problem in multi-view learning. To solve data sparsity problem in multi-view ratings, we propose a generic architecture of deep transfer tensor factorization (DTTF) by integrating deep learning and cross-domain tensor factorization, where the side information is embedded to provide effective compensation for the tensor sparsity. Then we exhibit instantiation of our architecture by combining stacked denoising autoencoder (SDAE) and CANDE-COMPIPARAFAC (CP) tensor factorization in both source and target domains, where the side information of both users and items is tightly coupled with the sparse multi-view ratings and the latent factors are learned based on the joint optimization. We tightly couple the multi-view ratings and the side information to improve cross-domain tensor factorization based recommendations. Experimental results on real-world datasets demonstrate that our DTTF schemes outperform state-of-the-art methods on multi-view rating predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1