Alberto Zeni, M. Crespi, Lorenzo Di Tucci, M. Santambrogio
{"title":"一种基于fpga的计算基础架构,可有效地支撑基因组序列","authors":"Alberto Zeni, M. Crespi, Lorenzo Di Tucci, M. Santambrogio","doi":"10.1109/FCCM.2019.00074","DOIUrl":null,"url":null,"abstract":"In the current years broad access to genomic data is leading to improve the understanding and prevention of human diseases as never before. De-novo genome assembly, represents a main obstacle to perform the analysis on a large scale, as it is one of the most time-consuming phases of the genome analysis. In this paper, we present a scalable, high performance and energy efficient architecture for the alignment step of SSPACE, a state of the art tool used to perform scaffolding also in case of de-novo assembly. The final architecture is able to achieve up to 9.83x speedup in performance when compared to the software version of Bowtie, a state of the art tool used by SSPACE to perform the alignment.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An FPGA-Based Computing Infrastructure Tailored to Efficiently Scaffold Genome Sequences\",\"authors\":\"Alberto Zeni, M. Crespi, Lorenzo Di Tucci, M. Santambrogio\",\"doi\":\"10.1109/FCCM.2019.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current years broad access to genomic data is leading to improve the understanding and prevention of human diseases as never before. De-novo genome assembly, represents a main obstacle to perform the analysis on a large scale, as it is one of the most time-consuming phases of the genome analysis. In this paper, we present a scalable, high performance and energy efficient architecture for the alignment step of SSPACE, a state of the art tool used to perform scaffolding also in case of de-novo assembly. The final architecture is able to achieve up to 9.83x speedup in performance when compared to the software version of Bowtie, a state of the art tool used by SSPACE to perform the alignment.\",\"PeriodicalId\":116955,\"journal\":{\"name\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2019.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An FPGA-Based Computing Infrastructure Tailored to Efficiently Scaffold Genome Sequences
In the current years broad access to genomic data is leading to improve the understanding and prevention of human diseases as never before. De-novo genome assembly, represents a main obstacle to perform the analysis on a large scale, as it is one of the most time-consuming phases of the genome analysis. In this paper, we present a scalable, high performance and energy efficient architecture for the alignment step of SSPACE, a state of the art tool used to perform scaffolding also in case of de-novo assembly. The final architecture is able to achieve up to 9.83x speedup in performance when compared to the software version of Bowtie, a state of the art tool used by SSPACE to perform the alignment.