{"title":"线性参数自适应偏差变化的NL-SHADE-LBC算法在CEC 2022数值优化中的应用","authors":"V. Stanovov, S. Akhmedova, E. Semenkin","doi":"10.1109/CEC55065.2022.9870295","DOIUrl":null,"url":null,"abstract":"In this paper the adaptive differential evolution algorithm is presented, which includes a set of concepts, such as linear bias change in parameter adaptation, repetitive generation of points for bound constraint handling, as well as non-linear population size reduction and selective pressure. The proposed algorithm is used to solve the problems of the CEC 2022 Bound Constrained Single Objective Numerical Optimization bench-mark problems. The computational experiments and analysis of the results demonstrate that the NL-SHADE-LBC algorithm presented in this study is able to demonstrate high efficiency in solving complex optimization problems compared to the winners of the previous years' competitions.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 Numerical Optimization\",\"authors\":\"V. Stanovov, S. Akhmedova, E. Semenkin\",\"doi\":\"10.1109/CEC55065.2022.9870295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the adaptive differential evolution algorithm is presented, which includes a set of concepts, such as linear bias change in parameter adaptation, repetitive generation of points for bound constraint handling, as well as non-linear population size reduction and selective pressure. The proposed algorithm is used to solve the problems of the CEC 2022 Bound Constrained Single Objective Numerical Optimization bench-mark problems. The computational experiments and analysis of the results demonstrate that the NL-SHADE-LBC algorithm presented in this study is able to demonstrate high efficiency in solving complex optimization problems compared to the winners of the previous years' competitions.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 Numerical Optimization
In this paper the adaptive differential evolution algorithm is presented, which includes a set of concepts, such as linear bias change in parameter adaptation, repetitive generation of points for bound constraint handling, as well as non-linear population size reduction and selective pressure. The proposed algorithm is used to solve the problems of the CEC 2022 Bound Constrained Single Objective Numerical Optimization bench-mark problems. The computational experiments and analysis of the results demonstrate that the NL-SHADE-LBC algorithm presented in this study is able to demonstrate high efficiency in solving complex optimization problems compared to the winners of the previous years' competitions.