J. Andilla, Omar E. Olarte, R. Aviles-Espinosa, P. Loza-Álvarez
{"title":"在厚的不均匀样品中成像深而清晰","authors":"J. Andilla, Omar E. Olarte, R. Aviles-Espinosa, P. Loza-Álvarez","doi":"10.1117/12.2041448","DOIUrl":null,"url":null,"abstract":"Acquisition of images deep inside large samples is one of the most demanded improvements that current biology applications ask for. Absorption, scattering and optical aberrations are the main difficulties encountered in these types of samples. Adaptive optics has been imported form astronomy to deal with the optical aberrations induced by the sample. Nonlinear microscopy and SPIM have been proposed as interesting options to image deep into a sample. Particularly, light-sheet microscopy, due to its low photo bleaching properties, opens new opportunities to obtain information for example in long time lapses for large 3D imaging. In this work, we perform an overview of the application of adaptive optics to the fluorescence microscopy in linear and non-linear modalities. Then we will focus in the light-sheet microscopy architecture of two orthogonal optical paths which implies new requirements in terms of optical correction. We will see the different issues that appear in light-sheet microscopy particularly when imaging large and non-flat samples. Finally, we will study the problem of the isoplanetic patches.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging deep and clear in thick inhomogeneous samples\",\"authors\":\"J. Andilla, Omar E. Olarte, R. Aviles-Espinosa, P. Loza-Álvarez\",\"doi\":\"10.1117/12.2041448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acquisition of images deep inside large samples is one of the most demanded improvements that current biology applications ask for. Absorption, scattering and optical aberrations are the main difficulties encountered in these types of samples. Adaptive optics has been imported form astronomy to deal with the optical aberrations induced by the sample. Nonlinear microscopy and SPIM have been proposed as interesting options to image deep into a sample. Particularly, light-sheet microscopy, due to its low photo bleaching properties, opens new opportunities to obtain information for example in long time lapses for large 3D imaging. In this work, we perform an overview of the application of adaptive optics to the fluorescence microscopy in linear and non-linear modalities. Then we will focus in the light-sheet microscopy architecture of two orthogonal optical paths which implies new requirements in terms of optical correction. We will see the different issues that appear in light-sheet microscopy particularly when imaging large and non-flat samples. Finally, we will study the problem of the isoplanetic patches.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2041448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2041448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imaging deep and clear in thick inhomogeneous samples
Acquisition of images deep inside large samples is one of the most demanded improvements that current biology applications ask for. Absorption, scattering and optical aberrations are the main difficulties encountered in these types of samples. Adaptive optics has been imported form astronomy to deal with the optical aberrations induced by the sample. Nonlinear microscopy and SPIM have been proposed as interesting options to image deep into a sample. Particularly, light-sheet microscopy, due to its low photo bleaching properties, opens new opportunities to obtain information for example in long time lapses for large 3D imaging. In this work, we perform an overview of the application of adaptive optics to the fluorescence microscopy in linear and non-linear modalities. Then we will focus in the light-sheet microscopy architecture of two orthogonal optical paths which implies new requirements in terms of optical correction. We will see the different issues that appear in light-sheet microscopy particularly when imaging large and non-flat samples. Finally, we will study the problem of the isoplanetic patches.