{"title":"开发DSP/MCM子系统,为大学评估小批量、低成本的MCM原型","authors":"P. Dehkordi, T. Powell, D. Bouldin","doi":"10.1109/MCMC.1996.510775","DOIUrl":null,"url":null,"abstract":"This paper discusses the design and development of a general-purpose programmable DSP subsystem packaged in a multichip module. The subsystem contains a 32-bit floating-point programmable DSP processor along with 256 K-byte of SRAM; 128 K-byte of FLASH memory, 10 K-gate FPGA and a 6-channel 12-bit ADC. The complete subsystem is interconnected on a 37 mm by 37 mm MCM-D substrate and packaged in a 320-pin ceramic quad flat pack. The design has been submitted to the MIDAS brokerage service to be fabricated by Micro Module Systems. Our experience shows that low-volume MCM prototyping is achievable and somewhat affordable for universities. The design flow electrical and thermal analyses, CAD tools, cost and lessons learned are discussed in this paper.","PeriodicalId":126969,"journal":{"name":"Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Development of a DSP/MCM subsystem assessing low-volume, low-cost MCM prototyping for universities\",\"authors\":\"P. Dehkordi, T. Powell, D. Bouldin\",\"doi\":\"10.1109/MCMC.1996.510775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design and development of a general-purpose programmable DSP subsystem packaged in a multichip module. The subsystem contains a 32-bit floating-point programmable DSP processor along with 256 K-byte of SRAM; 128 K-byte of FLASH memory, 10 K-gate FPGA and a 6-channel 12-bit ADC. The complete subsystem is interconnected on a 37 mm by 37 mm MCM-D substrate and packaged in a 320-pin ceramic quad flat pack. The design has been submitted to the MIDAS brokerage service to be fabricated by Micro Module Systems. Our experience shows that low-volume MCM prototyping is achievable and somewhat affordable for universities. The design flow electrical and thermal analyses, CAD tools, cost and lessons learned are discussed in this paper.\",\"PeriodicalId\":126969,\"journal\":{\"name\":\"Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCMC.1996.510775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCMC.1996.510775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a DSP/MCM subsystem assessing low-volume, low-cost MCM prototyping for universities
This paper discusses the design and development of a general-purpose programmable DSP subsystem packaged in a multichip module. The subsystem contains a 32-bit floating-point programmable DSP processor along with 256 K-byte of SRAM; 128 K-byte of FLASH memory, 10 K-gate FPGA and a 6-channel 12-bit ADC. The complete subsystem is interconnected on a 37 mm by 37 mm MCM-D substrate and packaged in a 320-pin ceramic quad flat pack. The design has been submitted to the MIDAS brokerage service to be fabricated by Micro Module Systems. Our experience shows that low-volume MCM prototyping is achievable and somewhat affordable for universities. The design flow electrical and thermal analyses, CAD tools, cost and lessons learned are discussed in this paper.