{"title":"台式平衡机器人的交互式强化学习","authors":"Haein Jeon, Yewon Kim, Bo-Yeong Kang","doi":"10.18653/v1/2021.splurobonlp-1.8","DOIUrl":null,"url":null,"abstract":"With the development of robotics, the use of robots in daily life is increasing, which has led to the need for anyone to easily train robots to improve robot use. Interactive reinforcement learning(IARL) is a method for robot training based on human–robot interaction; prior studies on IARL provide only limited types of feedback or require appropriately designed shaping rewards, which is known to be difficult and time-consuming. Therefore, in this study, we propose interactive deep reinforcement learning models based on voice feedback. In the proposed system, a robot learns the task of cooperative table balancing through deep Q-network using voice feedback provided by humans in real-time, with automatic speech recognition(ASR) and sentiment analysis to understand human voice feedback. As a result, an optimal policy convergence rate of up to 96% was realized, and performance was improved in all voice feedback-based models","PeriodicalId":442464,"journal":{"name":"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interactive Reinforcement Learning for Table Balancing Robot\",\"authors\":\"Haein Jeon, Yewon Kim, Bo-Yeong Kang\",\"doi\":\"10.18653/v1/2021.splurobonlp-1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of robotics, the use of robots in daily life is increasing, which has led to the need for anyone to easily train robots to improve robot use. Interactive reinforcement learning(IARL) is a method for robot training based on human–robot interaction; prior studies on IARL provide only limited types of feedback or require appropriately designed shaping rewards, which is known to be difficult and time-consuming. Therefore, in this study, we propose interactive deep reinforcement learning models based on voice feedback. In the proposed system, a robot learns the task of cooperative table balancing through deep Q-network using voice feedback provided by humans in real-time, with automatic speech recognition(ASR) and sentiment analysis to understand human voice feedback. As a result, an optimal policy convergence rate of up to 96% was realized, and performance was improved in all voice feedback-based models\",\"PeriodicalId\":442464,\"journal\":{\"name\":\"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.splurobonlp-1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.splurobonlp-1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着机器人技术的发展,机器人在日常生活中的使用越来越多,这就导致了需要任何人都能轻松地训练机器人来提高机器人的使用。交互式强化学习(IARL)是一种基于人机交互的机器人训练方法;先前关于IARL的研究只提供了有限类型的反馈,或者需要适当设计的塑造奖励,这是众所周知的困难和耗时的。因此,在本研究中,我们提出了基于语音反馈的交互式深度强化学习模型。在该系统中,机器人利用人类实时提供的语音反馈,通过深度q网络学习协作表平衡任务,并通过自动语音识别(ASR)和情感分析来理解人类的语音反馈。结果表明,在所有基于语音反馈的模型中,策略的最优收敛率高达96%,性能得到了提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive Reinforcement Learning for Table Balancing Robot
With the development of robotics, the use of robots in daily life is increasing, which has led to the need for anyone to easily train robots to improve robot use. Interactive reinforcement learning(IARL) is a method for robot training based on human–robot interaction; prior studies on IARL provide only limited types of feedback or require appropriately designed shaping rewards, which is known to be difficult and time-consuming. Therefore, in this study, we propose interactive deep reinforcement learning models based on voice feedback. In the proposed system, a robot learns the task of cooperative table balancing through deep Q-network using voice feedback provided by humans in real-time, with automatic speech recognition(ASR) and sentiment analysis to understand human voice feedback. As a result, an optimal policy convergence rate of up to 96% was realized, and performance was improved in all voice feedback-based models
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Level Gazetteer-Free Geocoding Interactive Reinforcement Learning for Table Balancing Robot Visually Grounded Follow-up Questions: a Dataset of Spatial Questions Which Require Dialogue History Symbol Grounding and Task Learning from Imperfect Corrections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1