{"title":"用于半导体元件失效分析的新型亚微米空间分辨率红外微光谱","authors":"Syahirah Zulkifli, Bernice Zee, M. Lo","doi":"10.1109/IPFA55383.2022.9915774","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the capability of submicron Optical PhotoThermal InfraRed (O-PTIR) spectroscopy in the chemical identification of semiconductor component failures during failure analysis which was otherwise limited by conventional Fourier Transform Infrared Spectroscopy (FTIR). In the case studies presented, O-PTIR could analyze imperfect sample surfaces of (1) a 5 μm narrow gap filled with strong infrared absorbers, and of (2) poorly reflective regions. The versatility of O-PTIR provides precise identification of material chemical identification to improve failure analysis capabilities of such challenging samples.","PeriodicalId":378702,"journal":{"name":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel Submicron Spatial Resolution Infrared Microspectroscopy for Failure Analysis of Semiconductor Components\",\"authors\":\"Syahirah Zulkifli, Bernice Zee, M. Lo\",\"doi\":\"10.1109/IPFA55383.2022.9915774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the capability of submicron Optical PhotoThermal InfraRed (O-PTIR) spectroscopy in the chemical identification of semiconductor component failures during failure analysis which was otherwise limited by conventional Fourier Transform Infrared Spectroscopy (FTIR). In the case studies presented, O-PTIR could analyze imperfect sample surfaces of (1) a 5 μm narrow gap filled with strong infrared absorbers, and of (2) poorly reflective regions. The versatility of O-PTIR provides precise identification of material chemical identification to improve failure analysis capabilities of such challenging samples.\",\"PeriodicalId\":378702,\"journal\":{\"name\":\"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA55383.2022.9915774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA55383.2022.9915774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Submicron Spatial Resolution Infrared Microspectroscopy for Failure Analysis of Semiconductor Components
This paper demonstrates the capability of submicron Optical PhotoThermal InfraRed (O-PTIR) spectroscopy in the chemical identification of semiconductor component failures during failure analysis which was otherwise limited by conventional Fourier Transform Infrared Spectroscopy (FTIR). In the case studies presented, O-PTIR could analyze imperfect sample surfaces of (1) a 5 μm narrow gap filled with strong infrared absorbers, and of (2) poorly reflective regions. The versatility of O-PTIR provides precise identification of material chemical identification to improve failure analysis capabilities of such challenging samples.