PCB时钟通道设计中的抖动放大注意事项

Chris Madden, Sam Chang, D. Oh, C. Yuan
{"title":"PCB时钟通道设计中的抖动放大注意事项","authors":"Chris Madden, Sam Chang, D. Oh, C. Yuan","doi":"10.1109/EPEP.2007.4387143","DOIUrl":null,"url":null,"abstract":"Jitter Amplification is a real concern in the design of PCB clock channels if the frequency of the clock is high and the PCB trace is relatively long. In this paper, we confirm the earlier finding of clock channel jitter amplification [1], using a multiple edge response (MER) simulation method instead of jitter impulse response for the channel. However, we show that both white Random Jitter (wRJ) and Sinusoidal Jitter (SJ) amplification are a function of the signal loss in the channel, and as such, are reduced significantly with equalization. Furthermore, simulated CMOS Tx RJ, which is dominated by its low frequency components, is amplified less than is wRJ, even for channels with >20dB signal loss. Measurement results are correlated with simulations for 2-6 GHz clocks on a channel containing 24-inches of PCB trace.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Jitter Amplification Considerations for PCB Clock Channel Design\",\"authors\":\"Chris Madden, Sam Chang, D. Oh, C. Yuan\",\"doi\":\"10.1109/EPEP.2007.4387143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jitter Amplification is a real concern in the design of PCB clock channels if the frequency of the clock is high and the PCB trace is relatively long. In this paper, we confirm the earlier finding of clock channel jitter amplification [1], using a multiple edge response (MER) simulation method instead of jitter impulse response for the channel. However, we show that both white Random Jitter (wRJ) and Sinusoidal Jitter (SJ) amplification are a function of the signal loss in the channel, and as such, are reduced significantly with equalization. Furthermore, simulated CMOS Tx RJ, which is dominated by its low frequency components, is amplified less than is wRJ, even for channels with >20dB signal loss. Measurement results are correlated with simulations for 2-6 GHz clocks on a channel containing 24-inches of PCB trace.\",\"PeriodicalId\":402571,\"journal\":{\"name\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2007.4387143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

如果时钟频率很高,PCB走线相对较长,那么在PCB时钟通道设计中,抖动放大是一个真正值得关注的问题。在本文中,我们证实了早期发现的时钟通道抖动放大[1],使用多边缘响应(MER)模拟方法代替通道的抖动脉冲响应。然而,我们表明白色随机抖动(wRJ)和正弦抖动(SJ)放大都是通道中信号损失的函数,因此,通过均衡可以显着降低。此外,模拟的CMOS Tx RJ以其低频分量为主,即使在信号损耗>20dB的通道中,其放大也小于其wRJ。测量结果与包含24英寸PCB走线的通道上2-6 GHz时钟的仿真相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jitter Amplification Considerations for PCB Clock Channel Design
Jitter Amplification is a real concern in the design of PCB clock channels if the frequency of the clock is high and the PCB trace is relatively long. In this paper, we confirm the earlier finding of clock channel jitter amplification [1], using a multiple edge response (MER) simulation method instead of jitter impulse response for the channel. However, we show that both white Random Jitter (wRJ) and Sinusoidal Jitter (SJ) amplification are a function of the signal loss in the channel, and as such, are reduced significantly with equalization. Furthermore, simulated CMOS Tx RJ, which is dominated by its low frequency components, is amplified less than is wRJ, even for channels with >20dB signal loss. Measurement results are correlated with simulations for 2-6 GHz clocks on a channel containing 24-inches of PCB trace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Simulation of High-Speed Interconnects using Delay Extraction and Transverse Partitioning Fast ISI Characterization of Passive Channels Using Extreme Value Distribution Efficient, Automatic Model Order Determination and Model Generation for Tabulated S-parameters A Hybrid Electromagnetic Bandgap (EBG) Power Plane with Discrete Inductors for Broadband Noise Suppression Swarm Intelligence for Electrical Design Space Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1