Saeed Habibi, Ramin Rahimi, M. Ferdowsi, P. Shamsi
{"title":"基于电感耦合的双开关高升压共地DC-DC变换器","authors":"Saeed Habibi, Ramin Rahimi, M. Ferdowsi, P. Shamsi","doi":"10.1109/IECON48115.2021.9589101","DOIUrl":null,"url":null,"abstract":"A non-isolated dual-switch high step-up DC-DC converter with a two-winding coupled inductor (CI) is proposed in this paper. The proposed topology is achieved by using a combination of the diode-capacitor voltage multiplier cells and a CI, resulting in the high voltage gain and low voltage stress on the power switches. The low voltage stress across power switches helps to reduce the power loss of the converter by employing low-voltage-rating power switches. The proposed topology has a continuous input current, and the common electrical ground between the input and output ports is preserved. The steady-state analysis is done for the proposed converter, and superiorities of the proposed converter over the existing topologies are demonstrated using a comparison study. To verify the steady-state analysis, simulation results of a 40 V to 400 V, 400 W converter are reported; the simulation is done in PLECS software.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Coupled Inductor-Based Dual-Switch High Step-up DC-DC Converter with Common Ground\",\"authors\":\"Saeed Habibi, Ramin Rahimi, M. Ferdowsi, P. Shamsi\",\"doi\":\"10.1109/IECON48115.2021.9589101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-isolated dual-switch high step-up DC-DC converter with a two-winding coupled inductor (CI) is proposed in this paper. The proposed topology is achieved by using a combination of the diode-capacitor voltage multiplier cells and a CI, resulting in the high voltage gain and low voltage stress on the power switches. The low voltage stress across power switches helps to reduce the power loss of the converter by employing low-voltage-rating power switches. The proposed topology has a continuous input current, and the common electrical ground between the input and output ports is preserved. The steady-state analysis is done for the proposed converter, and superiorities of the proposed converter over the existing topologies are demonstrated using a comparison study. To verify the steady-state analysis, simulation results of a 40 V to 400 V, 400 W converter are reported; the simulation is done in PLECS software.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
提出了一种带双绕组耦合电感(CI)的非隔离双开关高升压DC-DC变换器。所提出的拓扑结构是通过使用二极管电容器电压倍增器单元和CI的组合来实现的,从而在功率开关上获得高电压增益和低电压应力。通过采用低额定电压功率开关,跨功率开关的低电压应力有助于降低变换器的功率损耗。所提出的拓扑结构具有连续输入电流,并且保留了输入和输出端口之间的公共电接地。对所提出的变换器进行了稳态分析,并通过比较研究证明了所提出的变换器相对于现有拓扑结构的优越性。为了验证稳态分析,给出了40 V ~ 400 V、400 W变换器的仿真结果;仿真在PLECS软件中完成。
A Coupled Inductor-Based Dual-Switch High Step-up DC-DC Converter with Common Ground
A non-isolated dual-switch high step-up DC-DC converter with a two-winding coupled inductor (CI) is proposed in this paper. The proposed topology is achieved by using a combination of the diode-capacitor voltage multiplier cells and a CI, resulting in the high voltage gain and low voltage stress on the power switches. The low voltage stress across power switches helps to reduce the power loss of the converter by employing low-voltage-rating power switches. The proposed topology has a continuous input current, and the common electrical ground between the input and output ports is preserved. The steady-state analysis is done for the proposed converter, and superiorities of the proposed converter over the existing topologies are demonstrated using a comparison study. To verify the steady-state analysis, simulation results of a 40 V to 400 V, 400 W converter are reported; the simulation is done in PLECS software.