Top-k查询的高效双分辨率层索引

Jongwuk Lee, Hyunsouk Cho, Seung-won Hwang
{"title":"Top-k查询的高效双分辨率层索引","authors":"Jongwuk Lee, Hyunsouk Cho, Seung-won Hwang","doi":"10.1109/ICDE.2012.73","DOIUrl":null,"url":null,"abstract":"Top-k queries have gained considerable attention as an effective means for narrowing down the overwhelming amount of data. This paper studies the problem of constructing an indexing structure that efficiently supports top-k queries for varying scoring functions and retrieval sizes. The existing work can be categorized into three classes: list-, layer-, and view-based approaches. This paper focuses on the layer-based approach, pre-materializing tuples into consecutive multiple layers. The layer-based index enables us to return top-k answers efficiently by restricting access to tuples in the k layers. However, we observe that the number of tuples accessed in each layer can be reduced further. For this purpose, we propose a dual-resolution layer structure. Specifically, we iteratively build coarse-level layers using skylines, and divide each coarse-level layer into fine-level sub layers using convex skylines. The dual-resolution layer is able to leverage not only the dominance relationship between coarse-level layers, named for all-dominance, but also a relaxed dominance relationship between fine-level sub layers, named exists-dominance. Our extensive evaluation results demonstrate that our proposed method significantly reduces the number of tuples accessed than the state-of-the-art methods.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Efficient Dual-Resolution Layer Indexing for Top-k Queries\",\"authors\":\"Jongwuk Lee, Hyunsouk Cho, Seung-won Hwang\",\"doi\":\"10.1109/ICDE.2012.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top-k queries have gained considerable attention as an effective means for narrowing down the overwhelming amount of data. This paper studies the problem of constructing an indexing structure that efficiently supports top-k queries for varying scoring functions and retrieval sizes. The existing work can be categorized into three classes: list-, layer-, and view-based approaches. This paper focuses on the layer-based approach, pre-materializing tuples into consecutive multiple layers. The layer-based index enables us to return top-k answers efficiently by restricting access to tuples in the k layers. However, we observe that the number of tuples accessed in each layer can be reduced further. For this purpose, we propose a dual-resolution layer structure. Specifically, we iteratively build coarse-level layers using skylines, and divide each coarse-level layer into fine-level sub layers using convex skylines. The dual-resolution layer is able to leverage not only the dominance relationship between coarse-level layers, named for all-dominance, but also a relaxed dominance relationship between fine-level sub layers, named exists-dominance. Our extensive evaluation results demonstrate that our proposed method significantly reduces the number of tuples accessed than the state-of-the-art methods.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

Top-k查询作为一种缩小大量数据的有效方法已经获得了相当多的关注。本文研究了构建一个索引结构的问题,该索引结构能够有效地支持不同评分函数和检索大小的top-k查询。现有的工作可以分为三类:基于列表的、基于层的和基于视图的方法。本文主要研究基于层的方法,将元组预物化成连续的多层。基于层的索引通过限制对k层中的元组的访问,使我们能够有效地返回前k个答案。然而,我们观察到在每层中访问的元组的数量可以进一步减少。为此,我们提出了一种双分辨率层结构。具体而言,我们使用天际线迭代构建粗层,并使用凸天际线将每个粗层划分为细层子层。双分辨层既能利用粗层间的优势关系(all-dominance),又能利用细层间的宽松优势关系(exists-dominance)。我们广泛的评估结果表明,我们提出的方法比最先进的方法显著减少了访问元组的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Dual-Resolution Layer Indexing for Top-k Queries
Top-k queries have gained considerable attention as an effective means for narrowing down the overwhelming amount of data. This paper studies the problem of constructing an indexing structure that efficiently supports top-k queries for varying scoring functions and retrieval sizes. The existing work can be categorized into three classes: list-, layer-, and view-based approaches. This paper focuses on the layer-based approach, pre-materializing tuples into consecutive multiple layers. The layer-based index enables us to return top-k answers efficiently by restricting access to tuples in the k layers. However, we observe that the number of tuples accessed in each layer can be reduced further. For this purpose, we propose a dual-resolution layer structure. Specifically, we iteratively build coarse-level layers using skylines, and divide each coarse-level layer into fine-level sub layers using convex skylines. The dual-resolution layer is able to leverage not only the dominance relationship between coarse-level layers, named for all-dominance, but also a relaxed dominance relationship between fine-level sub layers, named exists-dominance. Our extensive evaluation results demonstrate that our proposed method significantly reduces the number of tuples accessed than the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1