结合通路分析和监督机器学习的单细胞转录组数据功能分类

Thodoris Koutsandreas, Ajdini Bajram, C. Mastrokalou, E. Pilalis, A. Chatziioannou, Ilias Maglogiannis
{"title":"结合通路分析和监督机器学习的单细胞转录组数据功能分类","authors":"Thodoris Koutsandreas, Ajdini Bajram, C. Mastrokalou, E. Pilalis, A. Chatziioannou, Ilias Maglogiannis","doi":"10.1109/BIBE.2019.00160","DOIUrl":null,"url":null,"abstract":"The revolution of single-cell technologies established a novel framework to investigate gene expression profiles in the level of individual cells. Scientists are able to investigate the biological variability of the same tissue, producing isolated transcriptomic data for each single cell. As a result, each transcriptomic experiment could extract a unique expression profile for each cell, posing new challenges in the translation analysis of all these profiles. Pathway analysis tools need to be adapted, not only to analyze simultaneously numerous gene expression profiles, but also to compare them, detecting functional differences and commonalities among the cells of the same issue, separating them to functional subclusters. In this study, we used the output of a single-cell experiment in the hematopoietic system, in order to determine a novel framework for the functional comparison of single cells, based on their pathway analysis with Gene Ontology annotation. Thousands of expression profiles of single cells, congregated in 15 different hematopoietic classes, were translated into networks of significant biological mechanisms, through the use of BioInfoMiner platform. We propose a novel framework to exploit these results and construct appropriate feature spaces of functional omponents, with a view to perform supervised learning to different hematopoietic cell types and separate their respective single cells, according to their functional profile. The constructed classification model performed interestingly high precision and sensitivity scores for some cell types, while the overall performance needs to be improved with further conceptual and technical refinements.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Pathway Analysis and Supervised Machine Learning for the Functional Classification of Single-Cell Transcriptomic Data\",\"authors\":\"Thodoris Koutsandreas, Ajdini Bajram, C. Mastrokalou, E. Pilalis, A. Chatziioannou, Ilias Maglogiannis\",\"doi\":\"10.1109/BIBE.2019.00160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The revolution of single-cell technologies established a novel framework to investigate gene expression profiles in the level of individual cells. Scientists are able to investigate the biological variability of the same tissue, producing isolated transcriptomic data for each single cell. As a result, each transcriptomic experiment could extract a unique expression profile for each cell, posing new challenges in the translation analysis of all these profiles. Pathway analysis tools need to be adapted, not only to analyze simultaneously numerous gene expression profiles, but also to compare them, detecting functional differences and commonalities among the cells of the same issue, separating them to functional subclusters. In this study, we used the output of a single-cell experiment in the hematopoietic system, in order to determine a novel framework for the functional comparison of single cells, based on their pathway analysis with Gene Ontology annotation. Thousands of expression profiles of single cells, congregated in 15 different hematopoietic classes, were translated into networks of significant biological mechanisms, through the use of BioInfoMiner platform. We propose a novel framework to exploit these results and construct appropriate feature spaces of functional omponents, with a view to perform supervised learning to different hematopoietic cell types and separate their respective single cells, according to their functional profile. The constructed classification model performed interestingly high precision and sensitivity scores for some cell types, while the overall performance needs to be improved with further conceptual and technical refinements.\",\"PeriodicalId\":318819,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2019.00160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞技术的革命为研究单个细胞水平的基因表达谱建立了一个新的框架。科学家们能够研究同一组织的生物学变异性,为每个单细胞产生分离的转录组数据。因此,每个转录组学实验都可以为每个细胞提取独特的表达谱,这对所有这些谱的翻译分析提出了新的挑战。通路分析工具需要进行调整,不仅要同时分析多个基因表达谱,还要对它们进行比较,检测相同问题细胞之间的功能差异和共性,将它们分离到功能亚簇。在这项研究中,我们使用了造血系统中单细胞实验的输出,以确定单细胞功能比较的新框架,基于基因本体注释的通路分析。通过使用BioInfoMiner平台,将聚集在15个不同造血类别中的数千个单细胞的表达谱翻译成具有重要生物学机制的网络。我们提出了一个新的框架来利用这些结果并构建适当的功能成分特征空间,以期对不同的造血细胞类型进行监督学习,并根据它们的功能特征分离它们各自的单细胞。构建的分类模型在某些细胞类型上表现出有趣的高精度和灵敏度得分,但整体性能需要进一步的概念和技术改进来提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Pathway Analysis and Supervised Machine Learning for the Functional Classification of Single-Cell Transcriptomic Data
The revolution of single-cell technologies established a novel framework to investigate gene expression profiles in the level of individual cells. Scientists are able to investigate the biological variability of the same tissue, producing isolated transcriptomic data for each single cell. As a result, each transcriptomic experiment could extract a unique expression profile for each cell, posing new challenges in the translation analysis of all these profiles. Pathway analysis tools need to be adapted, not only to analyze simultaneously numerous gene expression profiles, but also to compare them, detecting functional differences and commonalities among the cells of the same issue, separating them to functional subclusters. In this study, we used the output of a single-cell experiment in the hematopoietic system, in order to determine a novel framework for the functional comparison of single cells, based on their pathway analysis with Gene Ontology annotation. Thousands of expression profiles of single cells, congregated in 15 different hematopoietic classes, were translated into networks of significant biological mechanisms, through the use of BioInfoMiner platform. We propose a novel framework to exploit these results and construct appropriate feature spaces of functional omponents, with a view to perform supervised learning to different hematopoietic cell types and separate their respective single cells, according to their functional profile. The constructed classification model performed interestingly high precision and sensitivity scores for some cell types, while the overall performance needs to be improved with further conceptual and technical refinements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1