多核学习在学习情绪识别中的比较分析

O. K. Akputu, Yunli Lee, K. Seng
{"title":"多核学习在学习情绪识别中的比较分析","authors":"O. K. Akputu, Yunli Lee, K. Seng","doi":"10.1109/ICIMU.2014.7066659","DOIUrl":null,"url":null,"abstract":"Local appearance descriptors are widely used on facial emotion recognition tasks. With these descriptors, image filters, such as Gabor wavelet or local binary patterns (LBP) are applied on the whole or specific regions of the face to extract facial appearance changes. But it is also clear that beside feature descriptor; choice of suitable learning method that integrates feature novelty is vital. The multiple kernels learning (MKL) framework reportedly shows promising performances on problems of this nature. However, most MKL studies in object recognition domain provide conflicting reports about recognition performances of MKL. We resolve such conflicts by motivating a comparative analysis of MKL using appearance descriptors for facial emotion recognition-in challenging learning setting. Moreover, we introduce a simulated learning emotion (SLE) dataset for the first time in model performance evaluation. We conclude that given sufficient training elements (examples) with efficient feature descriptor, the rapper methods of Semi-infinite programming MKL (SIP-MKL) and SimpleMKL frameworks are relatively efficient on facial emotion recognition task, compare to other kernel combination schemes. Nevertheless we opine that average MKL performance accuracy, especially on learning facial emotion dataset, remains unsatisfactory (around 56%).","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative analysis of multiple kernel learning on learning emotion recognition\",\"authors\":\"O. K. Akputu, Yunli Lee, K. Seng\",\"doi\":\"10.1109/ICIMU.2014.7066659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local appearance descriptors are widely used on facial emotion recognition tasks. With these descriptors, image filters, such as Gabor wavelet or local binary patterns (LBP) are applied on the whole or specific regions of the face to extract facial appearance changes. But it is also clear that beside feature descriptor; choice of suitable learning method that integrates feature novelty is vital. The multiple kernels learning (MKL) framework reportedly shows promising performances on problems of this nature. However, most MKL studies in object recognition domain provide conflicting reports about recognition performances of MKL. We resolve such conflicts by motivating a comparative analysis of MKL using appearance descriptors for facial emotion recognition-in challenging learning setting. Moreover, we introduce a simulated learning emotion (SLE) dataset for the first time in model performance evaluation. We conclude that given sufficient training elements (examples) with efficient feature descriptor, the rapper methods of Semi-infinite programming MKL (SIP-MKL) and SimpleMKL frameworks are relatively efficient on facial emotion recognition task, compare to other kernel combination schemes. Nevertheless we opine that average MKL performance accuracy, especially on learning facial emotion dataset, remains unsatisfactory (around 56%).\",\"PeriodicalId\":408534,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMU.2014.7066659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

局部外观描述符广泛应用于面部情绪识别任务。利用这些描述符,将图像滤波器,如Gabor小波或局部二值模式(LBP)应用于面部的整个或特定区域,以提取面部外观变化。但很明显,除了特征描述符;选择合适的学习方法,结合特征的新颖性是至关重要的。据报道,多核学习(MKL)框架在这种性质的问题上表现出了很好的性能。然而,大多数目标识别领域的MKL研究对MKL的识别性能给出了相互矛盾的报告。我们通过在具有挑战性的学习环境中使用面部情绪识别的外观描述符来激励MKL的比较分析来解决这种冲突。此外,我们首次在模型性能评估中引入了模拟学习情绪(SLE)数据集。我们得出结论,在给定足够的训练元素(样例)和有效的特征描述符的情况下,半无限编程MKL (SIP-MKL)和SimpleMKL框架的rapper方法与其他核组合方案相比,在面部情绪识别任务上相对高效。然而,我们认为MKL的平均性能准确性,特别是在学习面部情绪数据集上,仍然不令人满意(约56%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of multiple kernel learning on learning emotion recognition
Local appearance descriptors are widely used on facial emotion recognition tasks. With these descriptors, image filters, such as Gabor wavelet or local binary patterns (LBP) are applied on the whole or specific regions of the face to extract facial appearance changes. But it is also clear that beside feature descriptor; choice of suitable learning method that integrates feature novelty is vital. The multiple kernels learning (MKL) framework reportedly shows promising performances on problems of this nature. However, most MKL studies in object recognition domain provide conflicting reports about recognition performances of MKL. We resolve such conflicts by motivating a comparative analysis of MKL using appearance descriptors for facial emotion recognition-in challenging learning setting. Moreover, we introduce a simulated learning emotion (SLE) dataset for the first time in model performance evaluation. We conclude that given sufficient training elements (examples) with efficient feature descriptor, the rapper methods of Semi-infinite programming MKL (SIP-MKL) and SimpleMKL frameworks are relatively efficient on facial emotion recognition task, compare to other kernel combination schemes. Nevertheless we opine that average MKL performance accuracy, especially on learning facial emotion dataset, remains unsatisfactory (around 56%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1