使用统计和机器学习方法的混合阿拉伯语关键短语提取

Nidaa Ghalib Ali, N. Omar
{"title":"使用统计和机器学习方法的混合阿拉伯语关键短语提取","authors":"Nidaa Ghalib Ali, N. Omar","doi":"10.1109/ICIMU.2014.7066645","DOIUrl":null,"url":null,"abstract":"Keyphrases are single-word or multi-word lexemes that concisely and accurate describe the subject or side of the subject discuss in a document. Manually assigning keyphrases is tedious and time consuming, especially because of Web proliferation. Thus, automatic keyphrase generation systems are urgently needed. This study proposes a keyphrase extraction method that combines several keyphrase extraction methods with the use of machine learning approaches (linear logistic regression, linear discriminant analysis, and support vector machines). The proposed methods use the output of several keyphrase extraction methods as input features for a machine learning algorithm, which then determines whether each term is a keyphrase. Results show that the SVM algorithm achieves the best performance with F1-measures 88.31%. These values are relatively high and comparable with those of previous keyphrase extraction models for the Arabic language.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Arabic keyphrases extraction using a hybrid of statistical and machine learning methods\",\"authors\":\"Nidaa Ghalib Ali, N. Omar\",\"doi\":\"10.1109/ICIMU.2014.7066645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keyphrases are single-word or multi-word lexemes that concisely and accurate describe the subject or side of the subject discuss in a document. Manually assigning keyphrases is tedious and time consuming, especially because of Web proliferation. Thus, automatic keyphrase generation systems are urgently needed. This study proposes a keyphrase extraction method that combines several keyphrase extraction methods with the use of machine learning approaches (linear logistic regression, linear discriminant analysis, and support vector machines). The proposed methods use the output of several keyphrase extraction methods as input features for a machine learning algorithm, which then determines whether each term is a keyphrase. Results show that the SVM algorithm achieves the best performance with F1-measures 88.31%. These values are relatively high and comparable with those of previous keyphrase extraction models for the Arabic language.\",\"PeriodicalId\":408534,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMU.2014.7066645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

关键词是一个单字或多字的词汇,它简明准确地描述了文档中讨论的主题或主题的侧面。手动分配关键字是乏味和耗时的,特别是因为Web的扩散。因此,迫切需要自动关键字生成系统。本研究提出了一种关键词提取方法,该方法结合了几种关键词提取方法和机器学习方法(线性逻辑回归、线性判别分析和支持向量机)。提出的方法使用几种关键字提取方法的输出作为机器学习算法的输入特征,然后确定每个术语是否为关键字。结果表明,支持向量机算法在f1测度下达到了88.31%的最佳性能。这些值相对较高,可与先前的阿拉伯语关键短语提取模型相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arabic keyphrases extraction using a hybrid of statistical and machine learning methods
Keyphrases are single-word or multi-word lexemes that concisely and accurate describe the subject or side of the subject discuss in a document. Manually assigning keyphrases is tedious and time consuming, especially because of Web proliferation. Thus, automatic keyphrase generation systems are urgently needed. This study proposes a keyphrase extraction method that combines several keyphrase extraction methods with the use of machine learning approaches (linear logistic regression, linear discriminant analysis, and support vector machines). The proposed methods use the output of several keyphrase extraction methods as input features for a machine learning algorithm, which then determines whether each term is a keyphrase. Results show that the SVM algorithm achieves the best performance with F1-measures 88.31%. These values are relatively high and comparable with those of previous keyphrase extraction models for the Arabic language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1